Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N‐alpha‐terminal acetyltransferase Nat4 and loss of its associated H4 N‐terminal acetylation (N‐acH4) extend yeast replicative lifespan. Notably, nat4Δ‐induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N‐acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N‐acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress‐response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ‐mediated longevity. Collectively, these findings establish histone N‐acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.