The 2016 SIGMORPHON Shared Task was devoted to the problem of morphological reinflection. It introduced morphological datasets for 10 languages with diverse typological characteristics. The shared task drew submissions from 9 teams representing 11 institutions reflecting a variety of approaches to addressing supervised learning of reinflection. For the simplest task, inflection generation from lemmas, the best system averaged 95.56% exact-match accuracy across all languages, ranging from Maltese (88.99%) to Hungarian (99.30%). With the relatively large training datasets provided, recurrent neural network architectures consistently performed best-in fact, there was a significant margin between neural and non-neural approaches. The best neural approach, averaged over all tasks and languages, outperformed the best nonneural one by 13.76% absolute; on individual tasks and languages the gap in accuracy sometimes exceeded 60%. Overall, the results show a strong state of the art, and serve as encouragement for future shared tasks that explore morphological analysis and generation with varying degrees of supervision.
The CoNLL-SIGMORPHON 2017 shared task on supervised morphological generation required systems to be trained and tested in each of 52 typologically diverse languages. In sub-task 1, submitted systems were asked to predict a specific inflected form of a given lemma. In sub-task 2, systems were given a lemma and some of its specific inflected forms, and asked to complete the inflectional paradigm by predicting all of the remaining inflected forms. Both sub-tasks included high, medium, and low-resource conditions. Sub-task 1 received 24 system submissions, while sub-task 2 received 3 system submissions. Following the success of neural sequence-to-sequence models in the SIGMORPHON 2016 shared task, all but one of the submissions included a neural component. The results show that high performance can be achieved with small training datasets, so long as models have appropriate inductive bias or make use of additional unlabeled data or synthetic data. However, different biasing and data augmentation resulted in non-identical sets of inflected forms being predicted correctly, suggesting that there is room for future improvement.
Can advances in NLP help advance cognitive modeling? We examine the role of artificial neural networks, the current state of the art in many common NLP tasks, by returning to a classic case study. In 1986, Rumelhart and McClelland famously introduced a neural architecture that learned to transduce English verb stems to their past tense forms. Shortly thereafter, Pinker and Prince (1988) presented a comprehensive rebuttal of many of Rumelhart and McClelland's claims. Much of the force of their attack centered on the empirical inadequacy of the Rumelhart and McClelland (1986) model. Today, however, that model is severely outmoded. We show that the Encoder-Decoder network architectures used in modern NLP systems obviate most of Pinker and Prince's criticisms without requiring any simplification of the past tense mapping problem. We suggest that the empirical performance of modern networks warrants a reëxamination of their utility in linguistic and cognitive modeling.
This paper presents a universal morphological feature schema that represents the finest distinctions in meaning that are expressed by overt, affixal inflectional morphology across languages. This schema is used to universalize data extracted from Wiktionary via a robust multidimensional table parsing algorithm and feature mapping algorithms, yielding 883,965 instantiated paradigms in 352 languages. These data are shown to be effective for training morphological analyzers, yielding significant accuracy gains when applied to Durrett and DeNero's (2013) paradigm learning framework.
We quantify the linguistic complexity of different languages' morphological systems. We verify that there is an empirical trade-off between paradigm size and irregularity: a language's inflectional paradigms may be either large in size or highly irregular, but never both. Our methodology measures paradigm irregularity as the entropy of the surface realization of a paradigm-how hard it is to jointly predict all the surface forms of a paradigm. We estimate this by a variational approximation. Our measurements are taken on large morphological paradigms from 31 typologically diverse languages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.