Austral summer rainfall over the period 1991/1992 to 2010/2011 was dynamically downscaled by the weather research and forecasting (WRF) model at 9 km resolution for South Africa. Lateral boundary conditions for WRF were provided from the European Centre for medium-range weather (ECMWF) reanalysis (ERA) interim data. The model biases for the rainfall were eval-uated over the South Africa as a whole and its nine prov-inces separately by employing three different convective parameterization schemes, namely the (1) Kain-Fritsch (KF), (2) Betts-Miller-Janjic (BMJ) and (3) Grell-Devenyi ensemble (GDE) schemes. All three schemes have gener-ated positive rainfall biases over South Africa, with the KF scheme producing the largest biases and mean absolute errors. Only the BMJ scheme could reproduce the intensity of rainfall anomalies, and also exhibited the highest cor-relation with observed interannual summer rainfall variability. In the KF scheme, a significantly high amount of moisture was transported from the tropics into South Africa. The vertical thermodynamic profiles show that the KF scheme has caused low level moisture convergence, due to the highly unstable atmosphere, and hence con-tributed to the widespread positive biases of rainfall. The negative bias in moisture, along with a stable atmosphere and negative biases of vertical velocity simulated by the GDE scheme resulted in negative rainfall biases, especially over the Limpopo Province. In terms of rain rate, the KF scheme generated the lowest number of low rain rates and the maximum number of moderate to high rain rates associated with more convective unstable environment. KF and GDE schemes overestimated the convective rain and underestimated the stratiform rain. However, the simulated convective and stratiform rain with BMJ scheme is in more agreement with the observations. This study also docu-ments the performance of regional model in downscaling the large scale climate mode such as El Nin˜o Southern Oscillation (ENSO) and subtropical dipole modes. The correlations between the simulated area averaged rainfalls over South Africa and Nino3.4 index were -0.66, -0.69 and -0.49 with KF, BMJ and GDE scheme respectively as compared to the observed correlation of -0.57. The model could reproduce the observed ENSO-South Africa rainfall relationship and could successfully simulate three wet (dry) years that are associated with La Nin˜a (El Ni˜no) and the BMJ scheme is closest to the observed variability. Also, the model showed good skill in simulating the excess rainfall over South Africa that is associated with positive sub-tropical Indian Ocean Dipole for the DJF season 2005/2006.
Windblown transport and deposition of dust is widely recognized as an important physical and chemical concern to climate, human health and ecosystems. Sistan is a region located in southeast Iran with extensive wind erosion, severe desertification and intense dust storms, which cause adverse effects in regional air quality and human health. To mitigate the impact of these phenomena, it is vital to ascertain the physical and chemical characteristics of airborne and soil dust. This paper examines for the first time, the mineralogical and chemical properties of dust over Sistan by collecting aerosol samples at two stations established close to a dry-bed lake dust source region, from August 2009 to August 2010. Furthermore, soil samples were collected from topsoil (0-5 cm depth) at several locations in the dry-bed Hamoun lakes and downwind areas. These data were analyzed to investigate the chemical and mineralogical characteristics of dust, relevance of inferred sources and contributions to air pollution. X-Ray Diffraction (XRD) analysis of airborne and soil dust samples shows that the dust mineralogy is dominated mainly by quartz (30-40%), calcite (18-23%), muscovite (10-17%), plagioclase (9-12%), chlorite (~6%) and enstatite (~3%), with minor components of dolomite, microcline, halite and gypsum. X-Ray Fluorescence (XRF) analyses of all the samples indicate that the most important oxide compositions of the airborne and soil dust are SiO 2 , CaO, Al 2 O 3 , Na 2 O, MgO and Fe 2 O 3 , exhibiting similar percentages for both stations and soil samples. Estimates of Enrichment Factors (EF) for all studied elements show that all of them have very low EF values, suggesting natural origin from local materials. The results suggest that a common dust source region can be inferred, which is the eroded sedimentary environment in the extensive Hamoun dry lakes lying to the north of Sistan.
Pfaff, MC, et al. 2019. A synthesis of three decades of socio-ecological change in False Bay, South Africa: setting the scene for multidisciplinary research and management. Elem Sci Anth, 7: 32.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.