Misalignment couplings for ship drive lines are installed between engine and gear or between gear and waterjet and transmit torque from one shaft to another while accommodating misalignment between the two shafts. The development process, the analysis and the in-service-experience of a new membrane type flexible coupling entirely made of advanced composite material are presented in this paper. The concept of this new coupling promises low mass, high misalignment capacity and good sound insulation compared to conventional couplings.
Due to recent advances in the field of broadband aerodynamic noise, tonalities of wind turbines (WT) are increasingly coming into focus in the wind industry. In this case, the structure is excited inside the drivetrain and the structure-borne sound propagates through the machinery and ultimately to the surfaces of the WT, where it is radiated into the ambient air. Since any tonalities are a system characteristic, they should be considered at an early stage of product development. On the one hand, great efforts are being made to develop ever lower-toned drivetrains. On the other hand, tonalities can efficiently be neutralised by systematically decoupling the excitations in the drivetrain from the sound-emitting surfaces of the wind turbine. In addition to the well-studied behaviour regarding the decoupling of non-torque rotor loads from the drivetrain, in this paper the influence of a low speed stage (LSS) coupling on the structure-borne sound propagation inside of an integrated drivetrain is investigated. In a previous study at the Center for Wind Power Drives, it could be shown that in an integrated drivetrain, the transfer paths through the main shaft and subsequently the main bearing becomes the dominant transfer path. This is in contrast to classic bearing configurations where the torque arms of the gearbox are the dominant transfer paths of excitations from the gearbox, revealing an increased potential of LSS Couplings especially for integrated drivetrains. Detailed numerical investigations are performed in order to understand and quantify the usage of a LSS coupling for lowering sound power levels of a WT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.