Teknologi semakin berkembang dan canggih dari masa ke masa bahkan untuk setiap detiknya, sehingga dengan ini perusahaan perlu memanfaatkan teknologi untuk menjambatani usaha ke pelanggan sehingga mempermudah dalam mengelola bisnis. Pertumbuhan bisnis khususnya dikota Nusa Tenggara Barat (NTB) sangat berkembangan persaingan bisnis dalam perdagangan sangat ketat sehingga membutuhkan strategi yang matang dalam mengelola usaha. Pada penelitan ini peneliti melakukan penelitian disalah satu perusahaan di Nusa Tenggara Barat dimana toko tersebut menjual berbagai jenis aksisoris. Toko yang dijadikan sebagai studi kasus ini merupakan toko yang terkenal oleh masyarakat sekitar sehingga bisa memiliki banyak pelanggan. Pada penelitian ini peneliti melakukan analisis bertujuan untuk mencari kemiripan barang berdasarkan item pembelian dijadikan sebagai acuan dalam tata letak barang dan mengidintifikasi kesamaan barang yang dibeli ketika menambah stok barang. Untuk mengidentifikasi tujuan pada penelitian ini peneliti melakukan proses perhitungan menggunakan dua metode yaitu apriori dan FP-Growth dan melakukan pengujian dengan 2 pengujian yaitu pengujian hasil dan rasio adapun hasil pengujian didapatkan FP-Growth menghasilkan rule yang lebih baik dibandingkan dengan algoritma apriori dengan total rule sebanyak 6, sedangakan algoritma apriori menghasilkan 4 rule, dan untuk pengujian dengan evaluasi hasil rule dari masing masing algoritma, algritma FP-Growth memiliki hasil yang terbaik dengan lift ratio 1.27908.
Student learning styles are important factors that have a strong impact on student performance in learning outcomes. That is why each learning method will produce different learning outcomes for students who have different learning styles. According to the previous study concluded that mixed learning produces learning outcomes that are superior to online and face-to-face learning models, but the questions are how is the difference between learning outcomes between student learning styles in mixed learning, and whether there is an interaction between mixed learning models and student learning styles towards learning outcomes. This study provides a scientific answer solution, by conducting experimental research of mix learning with a mixture of 40% face-to-face material learning and 60% online material learning for the subject of Algorithms and Programming. Based on 2-way ANOVA, T, and SCHEFFE tests towards student learning outcomes in this study, it is found: there are differences in learning outcomes between students who have different learning styles, the learning outcomes of male students achieve better learning outcomes than female students, and there is an interaction between student gender and student learning styles towards learning outcomes, where with further tests, it was found that there is no difference in learning outcomes based on student learning styles of all students except students who have a visual learning style with male sex achieving superior learning outcomes than students who have auditory and kinesthetic learning styles.
MAN-1 Mataram merupakan sekolah yang berada di kota Mataram, Sekolahan ini memiliki 2 kelas yaitu kelas unggulan dan kelas biasa. Setiap tahunnya MAN-1 Mataram mengalami peningkatan penerimaan pendaftaran siswa baru diperkiran tahun kedepan siswa barunya akan mengalami peningkatan yang banyak. Banyaknya siswa yang mendaftar membuat bagian kesiswaan MAN-1 Mataram mengalami kesulitan dalam penentuan kelas, apalagi ditemuakan siswa yang dikelas unggulan didapatkan prestasi dan nilai kurang standar. Berdasarkan permasalahan tersebut tujuan dari penelitan ini adalah mewujudkan pengelompokan kelas belajar berdasarkan nilai dan prestasi siswa baru sehingga diperoleh klasifikasi kelas unggulan. Metode penelitian yang digunakan adalah algoritma K-Means yang dilengkapi dengan program aplikasi berbasis web. Hasil dari penelitian ini menunjukan bahwa algoritma k-means mampu menghasilakan pemilihan dan pembagian kelas unggulan bagi calon siswa baru sesuai dengan nilai kemampuan siswa. Penerapan kelas unggulan berdampak positif bagi peningkatan pendidikan.
Drug use is very detrimental to the physical and psychological health of users. Drug abuse also causes addiction and is a global epidemic. Therefore it is not surprising that scientific research related to drugs has attracted attention for research. However, many factors become obstacles in the medical services of the drug user, including cost, flexibility, and a slow process. Meanwhile, electronic systems can speed up handling time, improve work efficiency, save costs and reduce inspection errors. It means that a breakthrough is needed in developing a platform that can identify drug users. Therefore, this research aims to build machine learning with expertise like an expert who can diagnose drug users and distinguish the types of drugs used by drug users. The expert system on machine learning was developed using the Forward Chaining and Certainty Factor methods. This study concludes that the expert system on machine learning developed can be used to diagnose drug users and distinguish the types of drugs used with an accuracy of up to 80%. The implications of the expert system on machine learning are an alternative method for narcotics officers and medical doctors in diagnosing drug users and the types of drugs used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.