Recent advances in computer vision are primarily driven by the usage of deep learning, which is known to require large amounts of data, and creating datasets for this purpose is not a trivial task. Larger benchmark datasets often have detailed processes with multiple stages and users with different roles during annotation. However, this can be difficult to implement in smaller projects where resources can be limited. Therefore, in this work we present our processes for creating an image dataset for kernel fragmentation and stover overlengths in Whole Plant Corn Silage. This includes the guidelines for annotating object instances in respective classes and statistics of gathered annotations. Given the challenging image conditions, where objects are present in large amounts of occlusion and clutter, the datasets appear appropriate for training models. However, we experience annotator inconsistency, which can hamper evaluation. Based on this we argue the importance of having an evaluation form independent of the manual annotation where we evaluate our models with physically based sieving metrics. Additionally, instead of the traditional time-consuming manual annotation approach, we evaluate Semi-Supervised Learning as an alternative, showing competitive results while requiring fewer annotations. Specifically, given a relatively large supervised set of around 1400 images we can improve the Average Precision by a number of percentage points. Additionally, we show a significantly large improvement when using an extremely small set of just over 100 images, with over 3× in Average Precision and up to 20 percentage points when estimating the quality.
Convolutional neural networks (CNNs) have been originally used for computer vision tasks, such as image classification. While several digital soil mapping studies have been assessing these deep learning algorithms for the prediction of soil properties, their potential for soil classification has not been explored yet. Moreover, the use of deep learning and neural networks in general has often raised concerns because of their presumed low interpretability (i.e., the black box pitfall). However, a recent and fast-developing sub-field of Artificial Intelligence (AI) called explainable AI (XAI) aims to clarify complex models such as CNNs in a systematic and interpretable manner. For example, it is possible to apply model-agnostic interpretation methods to extract interpretations from any machine learning model. In particular, SHAP (SHapley Additive exPlanations) is a method to explain individual predictions: SHAP values represent the contribution of a covariate to the final model predictions. The present study aimed at, first, evaluating the use of CNNs for the classification of potential acid sulfate soils located in the wetland areas of Jutland, Denmark (c. 6,500 km2), and second and most importantly, applying a model-agnostic interpretation method on the resulting CNN model. About 5,900 soil observations and 14 environmental covariates, including a digital elevation model and derived terrain attributes, were utilized as input data. The selected CNN model yielded slightly higher prediction accuracy than the random forest models which were using original or scaled covariates. These results can be explained by the use of a common variable selection method, namely recursive feature elimination, which was based on random forest and thus optimized the selection for this method. Notably, the SHAP method results enabled to clarify the CNN model predictions, in particular through the spatial interpretation of the most important covariates, which constitutes a crucial development for digital soil mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.