This work presents a superhydrophobic antireflective (AR) coating on glass. The coating consists of a grass-like alumina layer capped with plasma-deposited fluoropolymer. The grass-like alumina is formed by hot water treatment of atomic layer-deposited alumina on glass, and the fluoropolymer is plasmadeposited from CHF 3 . Excellent broadband AR performance is observed in the visible spectrum with an average transmission of 94.9% for single-sided coated glass, which is close to the maximum 95.3% possible for this glass. Extremely desirable contact angles are obtained with 5−7 min-long fluoropolymer treatments on grasslike alumina with 173°advancing and 160°receding contact angles. This type of multifunctional coating can be beneficial in a multitude of applications like self-cleaning AR coating for solar panels, windows in high-rise buildings, sensors, and aerospace applications as well as just utilizing the excellent water repellent behavior in applications where only superhydrophobicity is required.
We present a new type of nanoporous antireflection (AR) coating based on grass-like alumina with a graded refractive index profile. The grass-like alumina AR coating is fabricated using atomic layer deposition (ALD) of alumina and immersion in heated deionized water. Optical transmittance of 99.5% at 500 nm was achieved with average transmittance of 99.0% in the range of 350-800 nm at normal incidence for double-sided coated glass. Angular spectral transmittance (0-80°) of the double-sided AR coated glass was also measured in the range of 350-800 nm and found to have mean spectral transmittance of 94.0% at 60°, 85.0% at 70°, and 53.1% at 80° angles of incidence, respectively. The grass-like alumina AR coating is suitable for mass production with the presented technique: even hundreds of optical components can be coated in parallel. Furthermore, as an ALD-based technique, the coating can be deposited conformally on surfaces with extreme topography, unlike many spin-coating, physical vapor deposition or glancing angle deposition-based coatings used today.
3-D printing shows great potential in laboratories for making customized labware and reaction vessels. In addition, affordable fused filament fabrication (FFF)-based 3-D printing has successfully produced high-quality and affordable scientific equipment, focusing on tools without strict chemical compatibility limitations. As the additives and colorants used in 3-D printing filaments are proprietary, their compatibility with common chemicals is unknown, which has prevented their widespread use in laboratory chemical processing. In this study, the compatibility of ten widely available FFF plastics with solvents, acids, bases and solutions used in the wet processing of semiconductor materials is explored. The results provide data on materials unavailable in the literature and the chemical properties of 3-D printable plastics that were, are in line with literature. Overall, many 3-D printable plastics are compatible with concentrated solutions. Polypropylene emerged as a promising 3-D printable material for semiconductor processing due to its tolerance of strongly oxidizing acids, such as nitric and sulfuric acids. In addition, 3-D printed custom tools were demonstrated for a range of wet processing applications. The results show that 3-D printed plastics are potential materials for bespoke chemically resistant labware at less than 10% of the cost of such purchased tools. However, further studies are required to ascertain if such materials are fully compatible with clean room processing.
We present the effect of miscut angle of SiC substrates on N-polar AlN growth. The N-polar AlN layers were grown on C-face 4H-SiC substrates with a miscut towards <1100 > by metal-organic vapor phase epitaxy (MOVPE). The optimal V/III ratios for high-quality AlN growth on 1 • and 4 • miscut substrates were found to be 20000 and 1000, respectively. MOVPE grown N-polar AlN layer without hexagonal hillocks or step bunching was achieved using a 4H-SiC substrate with an intentional miscut of 1 • towards <1100 >. The 200-nm-thick AlN layer exhibited X-ray rocking curve full width half maximums of 203 arcsec and 389 arcsec for (002) and (102) reflections, respectively. The root mean square roughness was 0.43 nm for a 2 µm × 2 µm atomic force microscope scan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.