AbstractThere is a strongly growing interest for wastewater heat recovery (WWHR) in Sweden and elsewhere, but a lack of adequate tools to determine downstream impacts due to the associated temperature drop. The heat recovery potential and associated temperature drop after heat recovery on a building level is modelled for a case study in Linköping, Sweden. The maximum temperature drop reaches 4.2 °C, with an annual recovered heat of 0.65 kWh · person−1 · day−1. Wastewater temperature out from the heat exchanger was 18.0 °C in winter at the lowest. The drinking water source type can be an important factor when considering wastewater heat recovery.
Wastewater heat recovery up-stream of wastewater treatment plants (WWTPs) poses a risk to treatment performance, i.e. the biological processes. In order to perform a sustainability analysis, a detailed prediction of the temperature dynamics over the WWTP is needed. A comprehensive set of heat balance equations were included in a plant-wide process model and validated for the WWTP in Linköping, Sweden, to predict temperature variations over the whole year in a temperate climate. A detailed model for the excess heat generation of biological processes was developed. The annual average temperature change from influent to effluent was 0.78 °C with clear seasonal variations. 45% of the temperature change arises from processes other than the activated sludge unit. Hence, plant-wide energy modelling was necessary to predict in-tank temperature in the biological treatment steps. The energy processes with the largest energy gains were solar radiation and biological processes, while the largest losses were from conduction, convection and atmospheric radiation. Tanks with large surface areas have significant impact on the heat balance regardless of biological processes. Simulating a 3 °C lower influent temperature, the temperature in the activated sludge unit dropped by 2.8 °C, which had a negative impact on nitrogen removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.