1 Full length clones of the human 5-HT2B receptor were isolated from human liver, kidney and pancreas. The cloned human 5-HT2B receptors had a high degree of homology (-80%) with the rat and mouse 5-HT2B receptors. 2 PCR amplification was used to determine the tissue distribution of human 5-HT2B receptor mRNA. mRNA encoding the 5-HT2B receptor was expressed with greatest abundance in human liver and kidney. Lower levels of expression were detected in cerebral cortex, whole brain, pancreas and spleen. Expression was not detected in heart. 3 Northern blot analysis confirmed the presence of 5-HT2B receptor mRNA (a 2.4 kB sized band) in pancreas, liver and kidney. An additional 3.2 kB sized band of hybridization was detected in liver and kidney. This raises the possibility of a splice variant of the receptor or the presence of an additional homologous receptor. On the basis of a higher affinity for ketanserin and a lower affinity for yohimbine the human 5-HT2B receptor also appeared to differ from the rat 5-HT2B receptor. 5 These findings confirm the sequence of the human 5-HT2B receptor and they demonstrate that the receptor has a widespread tissue distribution. In addition, these data suggest that there are differences in ligand affinities between different species homologues of the receptor. Finally, the finding of two distinct bands on the Northern blots of liver and kidney raises the possibility of splice variants or subtypes of 5-HT2B receptors, within these tissues.
The atrial natriuretic peptide (ANP)-C receptor is generally believed to clear ANP; however, the ANP-C receptor may serve to reduce cAMP by inhibiting adenylate cyclase. ANP decreases endothelial permeability in coronary endothelial cell monolayers. We tested the hypothesis that part of this effect might be mediated by the ANP-C receptor. We used an endothelial cell monolayer from rat coronary endothelium and measured albumin flux. We applied either ANP or a ring-deleted ANP (C-ANP), which only stimulates the ANP-C receptor. ANP and C-ANP both decreased permeability from 100 pM to 100 nM by 60 and 30%, respectively. ANP increased endothelial cGMP contents 5.5-fold, whereas C-ANP had no effect. ANP reduced endothelial cAMP contents by 75%, which was only partly blocked by pertussis toxin. C-ANP also reduced cAMP; however, this effect was completely blocked by pertussis toxin. Protein kinase G inhibition blocked the ANP-mediated decrease in permeability by 50%. In contrast, pretreatment with pertussis toxin, in the face of protein kinase G inhibition, blocked the effect completely. C-ANP decreased permeability by half the amount of ANP. This C-ANP effect was completely blocked by pertussis toxin but not by protein kinase G inhibition. Isoproterenol (10 μM) increased permeability by almost 50%, which was completely blocked by ANP but only partially blocked by C-ANP. The C-ANP effect was blocked completely by pertussis toxin. Isoproterenol increased cAMP threefold, which was abolished by ANP. C-ANP reduced the isoproterenol-induced increase in cAMP by 50%. Isoproterenol had no effect on cGMP. We conclude that agonist binding to the ANP-C receptor inhibits cAMP production via a Giprotein-coupled signaling system. This inhibition may contribute to the decreased endothelial permeability evoked by ANP in this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.