Posttranslational amyloid- (A) modification is considered to play an important role in Alzheimer's disease (AD)etiology. An N-terminally modified A species, pyroglutamate-amyloid- (pE3-A), has been described as a major constituent of A deposits specific to human AD but absent in normal aging. Formed via cyclization of truncated A species by glutaminyl cyclase (QC; QPCT) and/or its isoenzyme (isoQC; QPCTL), pE3-A aggregates rapidly and is known to seed additional A aggregation. To directly investigate pE3-A toxicity in vivo, we generated and characterized transgenic TBA2.1 and TBA2.2 mice, which express truncated mutant human A. Along with a rapidly developing behavioral phenotype, these mice showed progressively accumulating A and pE3-A deposits in brain regions of neuronal loss, impaired long-term potentiation, microglial activation, and astrocytosis. Illustrating a threshold for pE3-A neurotoxicity, this phenotype was not found in heterozygous animals but in homozygous TBA2.1 or double-heterozygous TBA2.1/2.2 animals only. A significant amount of pE3-A formation was shown to be QC-dependent, because crossbreeding of TBA2.1 with QC knock-out, but not isoQC knock-out, mice significantly reduced pE3-A levels. Hence, lowering the rate of QC-dependent posttranslational pE3-A formation can, in turn, lower the amount of neurotoxic A species in AD.
NPR1/NIM1 is a key regulator of systemic acquired resistance (SAR) in Arabidopsis. Using the yeast two-hybrid system, we have identified three novel genes, NIMIN-1, NIMIN-2 and NIMIN-3 (NIMIN for NIM1-interacting) that encode structurally related proteins interacting physically with NPR1/NIM1. NIMIN-1 and NIMIN-2 both bind strongly to NPR1/NIM1 via a common binding motif interacting with the C-terminal moiety of NPR1/NIM1, whereas NIMIN-3 interacts with NPR1/NIM1 via the N-terminal part of NPR1/NIM1. In addition, NIMIN-1, NIMIN-2, and NIMIN-3 are able to interact via NPR1/NIM1 with basic leucine zipper transcription factors of the TGA family in a yeast tri-hybrid system. A mutant protein of NPR1/NIM1, npr1-2, which has been shown to be severely impaired in induction of SAR gene expression, failed to bind the NIMIN proteins. The NIMIN genes are expressed in Arabidopsis plants in response to SAR-inducing treatments, and the NIMIN proteins, like NPR1/NIM1, carry functional nuclear localization signals as revealed by expression of fusion proteins in yeast and in transgenic plants. Taken together, these data indicate that the NIMIN proteins, via physical interaction with NPR1/NIM1, are part of the signal transduction pathway leading to SAR gene expression in Arabidopsis.
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) residues at the N terminus of peptides and proteins. Hypothalamic pGlu hormones, such as thyrotropin-releasing hormone and gonadotropin-releasing hormone are essential for regulation of metabolism and fertility in the hypothalamic pituitary thyroid and gonadal axes, respectively. Here, we analyzed the consequences of constitutive genetic QC ablation on endocrine functions and on the behavior of adult mice. Adult homozygous QC knock-out mice are fertile and behave indistinguishably from wild type mice in tests of motor function, cognition, general activity, and ingestion behavior. The QC knock-out results in a dramatic drop of enzyme activity in the brain, especially in hypothalamus and in plasma. Other peripheral organs like liver and spleen still contain QC activity, which is most likely caused by its homolog isoQC. The serum gonadotropin-releasing hormone, TSH, and testosterone concentrations were not changed by QC depletion. The serum thyroxine was decreased by 24% in homozygous QC knock-out animals, suggesting a mild hypothyroidism. QC knock-out mice were indistinguishable from wild type with regard to blood glucose and glucose tolerance, thus differing from reports of thyrotropin-releasing hormone knock-out mice significantly. The results suggest a significant formation of the hypothalamic pGlu hormones by alternative mechanisms, like spontaneous cyclization or conversion by isoQC. The different effects of QC depletion on the hypothalamic pituitary thyroid and gonadal axes might indicate slightly different modes of substrate conversion of both enzymes. The absence of significant abnormalities in QC knock-out mice suggests the presence of a therapeutic window for suppression of QC activity in current drug development.
BackgroundPosttranslational modifications of beta amyloid (Aβ) have been shown to affect its biophysical and neurophysiological properties. One of these modifications is N-terminal pyroglutamate (pE) formation. Enzymatic glutaminyl cyclase (QC) activity catalyzes cyclization of truncated Aβ(3-x), generating pE3-Aβ. Compared to unmodified Aβ, pE3-Aβ is more hydrophobic and neurotoxic. In addition, it accelerates aggregation of other Aβ species. To directly investigate pE3-Aβ formation and toxicity in vivo, transgenic (tg) ETNA (E at the truncated N-terminus of Aβ) mice expressing truncated human Aβ(3–42) were generated and comprehensively characterized. To further investigate the role of QC in pE3-Aβ formation in vivo, ETNA mice were intercrossed with tg mice overexpressing human QC (hQC) to generate double tg ETNA-hQC mice.ResultsExpression of truncated Aβ(3–42) was detected mainly in the lateral striatum of ETNA mice, leading to progressive accumulation of pE3-Aβ. This ultimately resulted in astrocytosis, loss of DARPP-32 immunoreactivity, and neuronal loss at the sites of pE3-Aβ formation. Neuropathology in ETNA mice was associated with behavioral alterations. In particular, hyperactivity and impaired acoustic sensorimotor gating were detected. Double tg ETNA-hQC mice showed similar Aβ levels and expression sites, while pE3-Aβ were significantly increased, entailing increased astrocytosis and neuronal loss.ConclusionsETNA and ETNA-hQC mice represent novel mouse models for QC-mediated toxicity of truncated and pE-modified Aβ. Due to their significant striatal neurodegeneration these mice can also be used for analysis of striatal regulation of basal locomotor activity and sensorimotor gating, and possibly for DARPP-32-dependent neurophysiology and neuropathology. The spatio-temporal correlation of pE3-Aβ and neuropathology strongly argues for an important role of this Aβ species in neurodegenerative processes in these models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.