Especially in the insurance industry interest rate models play a crucial role, e.g. to calculate the insurance company’s liabilities, performance scenarios or risk measures. A prominant candidate is the 2-Additive-Factor Gaussian Model (Gauss2++ model)—in a different representation also known as the 2-Factor Hull-White model. In this paper, we propose a framework to estimate the model such that it can be applied under the risk neutral and the real world measure in a consistent manner. We first show that any time-dependent function can be used to specify the change of measure without loosing the analytic tractability of, e.g. zero-coupon bond prices in both worlds. We further propose two candidates, which are easy to calibrate: a step and a linear function. They represent two variants of our framework and distinguish between a short and a long term risk premium, which allows to regularize the interest rates in the long horizon. We apply both variants to historical data and show that they indeed produce realistic and much more stable long term interest rate forecast than the usage of a constant function, which is a popular choice in the industry. This stability over time would translate to performance scenarios of, e.g. interest rate sensitive fonds and risk measures.
Motivated by the application to German interest rates, we propose a timevarying autoregressive model for short and long term prediction of time series that exhibit a temporary non-stationary behavior but are assumed to mean revert in the long run. We use a Bayesian formulation to incorporate prior assumptions on the mean reverting process in the model and thereby regularize predictions in the far future. We use MCMC-based inference by deriving relevant full conditional distributions and employ a Metropolis-Hastings within Gibbs Sampler approach to sample from the posterior (predictive) distribution. In combining data-driven short term predictions with long term distribution assumptions our model is competitive to the existing methods in the short horizon while yielding reasonable predictions in the long run. We apply our model to interest rate data and contrast the forecasting performance to the one of a 2-Additive-Factor Gaussian model as well as to the predictions of a dynamic Nelson-Siegel model.
Especially in the insurance industry interest rate models play a crucial role e.g. to calculate the insurance company's liabilities, performance scenarios or risk measures. A prominant candidate is the 2-Additive-Factor Gaussian Model (Gauss2++ model) -in a different representation also known as the 2-Factor Hull-White model. In this paper, we propose a framework to estimate the model such that it can be applied under the risk neutral and the real world measure in a consistent manner. We first show that any progressive and square-integrable function can be used to specify the change of measure without loosing the analytic tractability of e.g. zero-coupon bond prices in both worlds. We further propose two time dependent candidates, which are easy to calibrate: a step and a linear function. They represent two variants of our framework and distinguish between a short and a long term risk premium, which allows to regularize the interest rates in the long horizon. We apply both variants to historical data and show that they indeed produce realistic and much more stable long term interest rate forecast than the usage of a constant function. This stability over time would translate to performance scenarios of e.g. interest rate sensitive fonds and risk measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.