G protein-coupled receptors (GPCRs) constitute an abundant family of membrane receptors of high pharmacological interest. Cell-based assays are the predominant means of assessing GPCR activation, but are limited by their inherent complexity. Functional molecular assays that directly and specifically report G protein activation by receptors could offer substantial advantages. We present an approach to immobilize receptors stably and with defined orientation to substrates. By surface plasmon resonance (SPR), we were able to follow ligand binding, G protein activation, and receptor deactivation of a representative GPCR, bovine rhodopsin. Microcontact printing was used to produce micrometer-sized patterns with high contrast in receptor activity. These patterns can be used for local referencing to enhance the sensitivity of chip-based assays. The immobilized receptor was stable both for hours and during several activation cycles. A ligand dose-response curve with the photoactivatable agonist 11-cis-retinal showed a half-maximal signal at 120 nM. Our findings may be useful to develop novel assay formats for GPCRs based on receptor immobilization to solid supports, particularly to sensor surfaces.
The topology of multispanning membrane proteins in the mammalian endoplasmic reticulum is thought to be dictated primarily by the first hydrophobic sequence. We analyzed the in vivo insertion of a series of chimeric model proteins containing two conflicting signal sequences, i.e., an NH2-terminal and an internal signal, each of which normally directs translocation of its COOH-terminal end. When the signals were separated by more than 60 residues, linear insertion with the second signal acting as a stop-transfer sequence was observed. With shorter spacers, an increasing fraction of proteins inserted with a translocated COOH terminus as dictated by the second signal. Whether this resulted from membrane targeting via the second signal was tested by measuring the targeting efficiency of NH2-terminal signals followed by polypeptides of different lengths. The results show that targeting is mediated predominantly by the first signal in a protein. Most importantly, we discovered that glycosylation within the spacer sequence affects protein orientation. This indicates that the nascent polypeptide can reorient within the translocation machinery, a process that is blocked by glycosylation. Thus, topogenesis of membrane proteins is a dynamic process in which topogenic information of closely spaced signal and transmembrane sequences is integrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.