The efficient design of continuous freeform surfaces, which transform a given source into an arbitrary target intensity, remains a challenging problem. A popular approach are ray-mapping methods, where first a ray mapping between the intensities is calculated and in a subsequent step the surface is constructed. The challenging part hereby is the to find an integrable mapping ensuring a continuous surface. Based on the law of reflection/refraction and the well-known integrability condition, we derive a general condition for the surface and ray mapping for a collimated input beam. It is shown that in a small-angle approximation a proper mapping can be calculated via optimal mass transport. We show that the surface can be constructed by solving a linear advection equation with appropriate boundary conditions. The results imply that the optimal mass transport mapping is approximately integrable over a wide range of distances between the freeform and the target plane and offer an efficient way to construct the surface by solving standard integrals. The efficiency is demonstrated by applying it to two challenging design examples. PACS numbers: 42.15.-i, 42.15.Eq.
Numerous applications require the simultaneous redistribution of the irradiance and phase of a laser beam. The beam shape is thereby determined by the respective application. An elegant way to control the irradiance and phase at the same time is from double freeform surfaces. In this work, the numerical design of continuous double freeform surfaces from ray-mapping methods for collimated beam shaping with arbitrary irradiances is considered. These methods consist of the calculation of a proper ray mapping between the source and the target irradiance and the subsequent construction of the freeform surfaces. By combining the law of refraction, the constant optical path length, and the surface continuity condition, a partial differential equation (PDE) for the ray mapping is derived. It is shown that the PDE can be fulfilled in a small-angle approximation by a mapping derived from optimal mass transport with a quadratic cost function. To overcome the restriction to the paraxial regime, we use this mapping as an initial iterate for the simultaneous solution of the Jacobian equation and the ray mapping PDE by a root-finding algorithm. The presented approach enables the efficient calculation of double freeform lenses with small distances between the freeform surfaces for complex target irradiances. This is demonstrated by applying it to the design of a single-lens and a two-lens system.
In beam shaping applications, the minimization of the number of necessary optical elements for the beam shaping process can benefit the compactness of the optical system and reduce its cost. The single freeform surface design for input wavefronts, which are neither planar nor spherical, is therefore of interest. In this work, the design of single freeform surfaces for a given zero-étendue source and complex target irradiances is investigated. Hence, not only collimated input beams or point sources are assumed. Instead, a predefined input ray direction vector field and irradiance distribution on a source plane, which has to be redistributed by a single freeform surface to give the predefined target irradiance, is considered. To solve this design problem, a partial differential equation (PDE) or PDE system, respectively, for the unknown surface and its corresponding ray mapping is derived from energy conservation and the ray-tracing equations. In contrast to former PDE formulations of the single freeform design problem, the derived PDE of Monge-Ampère type is formulated for general zero-étendue sources in cartesian coordinates. The PDE system is discretized with finite differences and the resulting nonlinear equation system solved by a root-finding algorithm. The basis of the efficient solution of the PDE system builds the introduction of an initial iterate constuction approach for a given input direction vector field, which uses optimal mass transport with a quadratic cost function. After a detailed description of the numerical algorithm, the efficiency of the design method is demonstrated by applying it to several design examples. This includes the redistribution of a collimated input beam beyond the paraxial approximation, the shaping of point source radiation and the shaping of an astigmatic input wavefront into a complex target irradiance distribution.PACS numbers: 42.15.-i, 42.15.Eq.
The spontaneous emission rate of dipole emitters close to plasmonic dimers are theoretically studied within a nonlocal hydrodynamic model. A nonlocal model has to be used since quantum emitters in the immediate environment of a metallic nanoparticle probe its electronic structure. Compared to local calculations, the emission rate is significantly reduced. The influence is mostly pronounced if the emitter is located close to sharp edges. We suggest to use quantum emitters to test nonlocal effects in experimentally feasible configurations.
Modern optical measurement technologies such as structured light microscopy or fringe-projection profilometry rely fundamentally on structured illumination of the specimen or probe. Miniaturizing the applied illumination concept enables the availability of these methodologies even in spatial domains that have remained inaccessible so far. Here we introduce a design methodology to realize complex illumination patterns with high diffraction efficiencies in a strongly miniaturized and functional integrated approach. This is achieved by combining the advantages of refractive freeform wavefront tailoring and diffractive beam shaping. This novel concept overcomes classical stray light issues known from conventional diffractive beam shaping and remains valid for micro-optical systems, i.e., beyond the geometric optical regime. Moreover, the design process is in particular optimized to reduce the aspect ratio of the obtained surface features. This strongly improves the manufacturability and as-built performance of the designed optical element, and the feasibility of the approach is demonstrated by the design and realization of monolithic beam shaping units on the tips of optical fibers via two-photon direct laser writing. This provides the means to realize complex illumination patterns in an integrated and mechanically flexible approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.