Using suitable scanning strategies, even single crystals can emerge from powder during additive manufacturing. In this paper, a full microstructure map for additive manufacturing of technical single crystals is presented using the conventional single crystal Ni-based superalloy CMSX-4. The correlation between process parameters, melt pool size and shape, as well as single crystal fraction, is investigated through a high number of experiments supported by numerical simulations. Based on these results, a strategy for the fabrication of high fraction single crystals in powder bed fusion additive manufacturing is deduced.
The development of process parameters for electron beam powder bed fusion (PBF-EB) is usually made with simple geometries and uniform scan lengths. The transfer to complex parts with various scan lengths can be achieved by adapting beam parameters such as beam power and scan speed. Under ideal conditions, this adaption results in a constant energy input into the powder bed despite of the local scan length. However, numerous PBF-EB machines show deviations from the ideal situation because the beam diameter is subject to significant changes if the beam power is changed. This study aims to demonstrate typical scaling issues when applying process parameters to scan lengths up to 45 mm using a fourth generation γ-TiAl alloy. Line energy, area energy, return time, and lateral velocity are kept constant during the additive manufacturing process by adjusting beam power and beam velocity to various scan lengths. Samples produced in this way are examined by light microscopy regarding lateral melt pool extension, melt pool depth, porosity, and microstructure. The process-induced aluminum evaporation is measured by electron probe microanalysis. The experiments reveal undesired changes in melt pool geometry, gas porosity, and aluminum evaporation by increasing the beam power. In detail, beam widening is identified as the reason for the change in melt pool dimensions and microstructure. This finding is supported by numerical calculations from a semi-analytic heat conduction model. This study demonstrates that in-depth knowledge of the electron beam diameter is required to thoroughly control the PBF-EB process, especially when scaling process parameters from simply shaped geometries to complex parts with various scan lengths.
This study introduces and verifies a basic mechanism of surface topography evolution in electron beam additive manufacturing (E-PBF). A semi-analytical heat conduction model is used to examine the spatio-temporal evolution of the meltpool and segment the build surface according to the emerging persistent meltpool domains. Each persistent domain is directly compared with the corresponding melt surface, and exhibits a characteristic surface morphology and topography. The proposed underlying mechanism of topography evolution is based on different forms of material transport in each distinct persistent domain, driven by evaporation and thermocapillary convection along the temperature gradient of the emerging meltpool. This effect is shown to be responsible for the upper bound of the standard process window in E-PBF, where surface bulges form. Based on this mechanism, process strategies to prevent the formation of surface bulges for complex geometries are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.