We show that the perturbative expansion of general gauge theories can be expressed in terms of gauge invariant variables to all orders in perturbations. In this we generalize techniques developed in gauge invariant cosmological perturbation theory, using Bardeen variables, by interpreting the passing over to gauge invariant fields as a homotopy transfer of the strongly homotopy Lie algebras encoding the gauge theory. This is illustrated for Yang-Mills theory, gravity on flat and cosmological backgrounds and for the massless sector of closed string theory. The perturbation lemma yields an algorithmic procedure to determine the higher corrections of the gauge invariant variables and the action in terms of these.
We provide a formulation of quantum mechanics based on the cohomology of the Batalin-Vilkovisky (BV) algebra. Focusing on quantum-mechanical systems without gauge symmetry we introduce a homotopy retract from the chain complex of the harmonic oscillator to finite-dimensional phase space. This induces a homotopy transfer from the BV algebra to the algebra of functions on phase space. Quantum expectation values for a given operator or functional are computed by the function whose pullback gives a functional in the same cohomology class. This statement is proved in perturbation theory by relating the perturbation lemma to Wick's theorem. We test this method by computing two-point functions for the harmonic oscillator for position eigenstates and coherent states. Finally, we derive the Unruh effect, illustrating that these methods are applicable to quantum field theory.
We show that the perturbative expansion of general gauge theories can be expressed in terms of gauge invariant variables to all orders in perturbations. In this we generalize techniques developed in gauge invariant cosmological perturbation theory, using Bardeen variables, by interpreting the passing over to gauge invariant fields as a homotopy transfer of the strongly homotopy Lie algebras encoding the gauge theory. This is illustrated for Yang-Mills theory, gravity on flat and cosmological backgrounds and for the massless sector of closed string theory. The perturbation lemma yields an algorithmic procedure to determine the higher corrections of the gauge invariant variables and the action in terms of these.
We show that boundary string field theory realizes the minimal model of open string field theory. More precisely, we observe that the expansion of the (co)homological vector field, Q of boundary string field theory in the cohomology of its linear part reproduces the S-matrices of perturbative string theory. In mathematical terms, boundary string field theory realizes the minimal model map of the cohomological perturbation lemma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.