This paper presents wall shear stress measurements obtained with a new type of wall-mounted probe based on the thermal electrical principle. The sensor consists of three single surface hot wires arranged in a delta configuration. This allows for measuring wall shear stress magnitude and direction simultaneously. Each probe has to be calibrated in a flat plate experiment for a number of wall shear values and flow directions before applying it to the relevant flow situation. To assess the full potential of the newly designed sensors, they were applied to a low speed, large scale cascade test section equipped with highly loaded compressor blades. The high blade loading in conjunction with a small blade aspect ratio results in a strongly three-dimensional flow field with large secondary flow structures and flow separation. Furthermore, laminar separation bubbles can be observed on the blade surface. The wall shear stress distribution allows for resolving these existing flow structures and provides detailed insight into the flow on the blade’s surface. The additionally measured flow direction reveals further details of the flow field. Parallel to the experiments, RANS simulations were conducted using the commercial flow solver CFX to compare the simulated results with the measured values.
This paper presents wall shear stress measurements obtained with a new type of wall-mounted probe based on the thermal electrical principle. The sensor consists of three single surface hot wires arranged in a δ configuration. This allows for measuring wall shear stress magnitude and direction simultaneously. Each probe has to be calibrated in a flat plate experiment for a number of wall shear values and flow directions before applying it to the relevant flow situation. To assess the full potential of the newly designed sensors, they were applied to a low-speed, large-scale cascade test section equipped with highly loaded compressor blades. The high blade loading in conjunction with a small blade aspect ratio results in a strongly three-dimensional flow field with large secondary flow structures and flow separation. Furthermore, laminar separation bubbles can be observed on the blade surface. The wall shear stress distribution allows for resolving these existing flow structures and provides detailed insight into the flow on the blade’s surface. The additionally measured flow direction reveals further details of the flow field. Parallel to the experiments, RANS simulations were conducted using the commercial flow solver CFX to compare the simulated results with the measured values.
Detailed experimental investigations have been conducted to gain profound knowledge of airfoil clocking mechanisms in axial compressors. Clocking, the circumferential indexing of adjacent rotor or stator rows with equal blade counts, is known as a potential means to modify the flow field in multistage turbo-machinery and increase overall efficiencies of both turbines and compressors. These beneficial effects on turbomachine performance are due to wake-airfoil interactions and primarily depend on the alignment of a downstream blade or vane row with upstream wake trajectories that are generated in the same frame of reference. The present survey describes and discusses the experimental research on Rotor and Stator Clocking effects in a low-speed 2.5-stage axial flow compressor. For both Rotor and Stator Clocking, variations of Stage 2 performance have been found that are sinusoidal in trend over the clocking angle and originate from a significant change in static pressure rise across the clocked blade rows. Time-averaged measurements basically suggest the highest pressure gain, if the upstream wakes pass through mid-passage of the downstream blade row. In case of Rotor Clocking, this may even lead to a variation in compressor operating range. The fundamental aerodynamic mechanism responsible for the clocking effect can be attributed to a shift of the suction-sided boundary layer transition over the clocking angle. Regarding overall Stage 2 performance, the investigations show that Full Clocking, i.e. the combination of Rotor and Stator Clocking, nearly doubles the potential of single row indexing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.