Abstract-In this work, a framework for motion prediction of vehicles and safety assessment of traffic scenes is presented. The developed framework can be used for driver assistant systems as well as for autonomous driving applications. In order to assess the safety of the future trajectories of the vehicle, these systems require a prediction of the future motion of all traffic participants. As the traffic participants have a mutual influence on each other, the interaction of them is explicitly considered in this framework, which is inspired by an optimization problem. Taking the mutual influence of traffic participants into account, this framework differs from the existing approaches which consider the interaction only insufficiently, suffering reliability in real traffic scenes. For motion prediction, the collision probability of a vehicle performing a certain maneuver, is computed. Based on the safety evaluation and the assumption that drivers avoid collisions, the prediction is realized. Simulation scenarios and real-world results show the functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.