Do biological motors move with regular steps? To address this question, we constructed instrumentation with the spatial and temporal sensitivity to resolve movement on a molecular scale. We deposited silica beads carrying single molecules of the motor protein kinesin on microtubules using optical tweezers and analysed their motion under controlled loads by interferometry. We find that kinesin moves with 8-nm steps.
Cells both actively generate and sensitively react to forces through their mechanical framework, the cytoskeleton, which is a nonequilibrium composite material including polymers and motor proteins. We measured the dynamics and mechanical properties of a simple three-component model system consisting of myosin II, actin filaments, and cross-linkers. In this system, stresses arising from motor activity controlled the cytoskeletal network mechanics, increasing stiffness by a factor of nearly 100 and qualitatively changing the viscoelastic response of the network in an adenosine triphosphate-dependent manner. We present a quantitative theoretical model connecting the large-scale properties of this active gel to molecular force generation.
Practical components for three-dimensional molecular nanofabrication must be simple to produce, stereopure, rigid, and adaptable. We report a family of DNA tetrahedra, less than 10 nanometers on a side, that can self-assemble in seconds with near-quantitative yield of one diastereomer. They can be connected by programmable DNA linkers. Their triangulated architecture confers structural stability; by compressing a DNA tetrahedron with an atomic force microscope, we have measured the axial compressibility of DNA and observed the buckling of the double helix under high loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.