We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA. Code has been made available at: https://github.com/ facebookresearch/SlowFast.
Recent applications of Convolutional Neural Networks (ConvNets) for human action recognition in videos have proposed different solutions for incorporating the appearance and motion information. We study a number of ways of fusing ConvNet towers both spatially and temporally in order to best take advantage of this spatio-temporal information. We make the following findings: (i) that rather than fusing at the softmax layer, a spatial and temporal network can be fused at a convolution layer without loss of performance, but with a substantial saving in parameters; (ii) that it is better to fuse such networks spatially at the last convolutional layer than earlier, and that additionally fusing at the class prediction layer can boost accuracy; finally (iii) that pooling of abstract convolutional features over spatiotemporal neighbourhoods further boosts performance. Based on these studies we propose a new ConvNet architecture for spatiotemporal fusion of video snippets, and evaluate its performance on standard benchmarks where this architecture achieves stateof-the-art results. Our code and models are available at
No abstract
In this work, we demonstrate that 3D poses in video can be effectively estimated with a fully convolutional model based on dilated temporal convolutions over 2D keypoints. We also introduce back-projection, a simple and effective semi-supervised training method that leverages unlabeled video data. We start with predicted 2D keypoints for unlabeled video, then estimate 3D poses and finally back-project to the input 2D keypoints. In the supervised setting, our fully-convolutional model outperforms the previous best result from the literature by 6 mm mean per-joint position error on Human3.6M, corresponding to an error reduction of 11%, and the model also shows significant improvements on HumanEva-I. Moreover, experiments with back-projection show that it comfortably outperforms previous state-of-the-art results in semisupervised settings where labeled data is scarce. Code and models are available at https://github.com/ facebookresearch/
Two-stream Convolutional Networks (ConvNets) have shown strong performance for human action recognition in videos. Recently, Residual Networks (ResNets) have arisen as a new technique to train extremely deep architectures. In this paper, we introduce spatiotemporal ResNets as a combination of these two approaches. Our novel architecture generalizes ResNets for the spatiotemporal domain by introducing residual connections in two ways. First, we inject residual connections between the appearance and motion pathways of a two-stream architecture to allow spatiotemporal interaction between the two streams. Second, we transform pretrained image ConvNets into spatiotemporal networks by equipping them with learnable convolutional filters that are initialized as temporal residual connections and operate on adjacent feature maps in time. This approach slowly increases the spatiotemporal receptive field as the depth of the model increases and naturally integrates image ConvNet design principles. The whole model is trained end-to-end to allow hierarchical learning of complex spatiotemporal features. We evaluate our novel spatiotemporal ResNet using two widely used action recognition benchmarks where it exceeds the previous state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.