Climate change is projected to impact food production stability in many tropical countries through impacts on crop potential. However, without quantitative assessments of where, by how much and to what extent crop production is possible now and under future climatic conditions, efforts to design and implement adaptation strategies under Nationally Determined Contributions (NDCs) and National Action Plans (NAP) are unsystematic. In this study, we used extreme gradient boosting, a machine learning approach to model the current climatic suitability for maize, sorghum, cassava and groundnut in Ghana using yield data and agronomically important variables. We then used multi-model future climate projections for the 2050s and two greenhouse gas emissions scenarios (RCP 2.6 and RCP 8.5) to predict changes in the suitability range of these crops. We achieved a good model fit in determining suitability classes for all crops (AUC = 0.81-0.87). Precipitation-based factors are suggested as most important in determining crop suitability, though the importance is crop-specific. Under projected climatic conditions, optimal suitability areas will decrease for all crops except for groundnuts under RCP8.5 (no change: 0%), with greatest losses for maize (12% under RCP2.6 and 14% under RCP8.5). Under current climatic conditions, 18% of Ghana has optimal suitability for two crops, 2% for three crops with no area having optimal suitability for all the four crops. Under projected climatic conditions, areas with optimal suitability for two and three crops will decrease by 12% as areas having moderate and marginal conditions for multiple crops increase. We also found that although the distribution of multiple crop suitability is spatially distinct, cassava and groundnut will be more simultaneously suitable for the south while groundnut and sorghum will be more suitable for the northern parts of Ghana under projected climatic conditions.
Quantifying the influence of weather on yield variability is decisive for agricultural management under current and future climate anomalies. We extended an existing semiempirical modeling scheme that allows for such quantification. Yield anomalies, measured as interannual differences, were modeled for maize, soybeans, and wheat in the United States and 32 other main producer countries. We used two yield data sets, one derived from reported yields and the other from a global yield data set deduced from remote sensing. We assessed the capacity of the model to forecast yields within the growing season. In the United States, our model can explain at least two-thirds (63%-81%) of observed yield anomalies. Its out-of-sample performance (34%-55%) suggests a robust yield projection capacity when applied to unknown weather. Out-of-sample performance is lower when using remote sensing-derived yield data. The share of weather-driven yield fluctuation varies spatially, and estimated coefficients agree with expectations. Globally, the explained variance in yield anomalies based on the remote sensing data set is similar to the United States (71%-84%). But the out-of-sample performance is lower (15%-42%). The performance discrepancy is likely due to shortcomings of the remote sensing yield data as it diminishes when using reported yield anomalies instead. Our model allows for robust forecasting of yields up to 2 months before harvest for several main producer countries. An additional experiment suggests moderate yield losses under mean warming, assuming no major changes in temperature extremes. We conclude that our model can detect weather influences on yield anomalies and project yields with unknown weather. It requires only monthly input data and has a low computational demand. Its within-season yield forecasting capacity provides a basis for practical applications like local adaptation planning. Our study underlines high-quality yield monitoring and statistics as critical prerequisites to guide adaptation under climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.