On August 22, 2014, the satellites GSAT-0201 and GSAT-0202 of the European GNSS Galileo were unintentionally launched into eccentric orbits. Unexpectedly, this has become a fortunate scientific opportunity since the onboard hydrogen masers allow for a sensitive test of the redshift predicted by the theory of general relativity. In the present Letter we describe an analysis of approximately three years of data from these satellites including three different clocks. For one of these we determine the test parameter quantifying a potential violation of the combined effects of the gravitational redshift and the relativistic Doppler shift. The uncertainty of our result is reduced by more than a factor 4 as compared to the values of Gravity Probe A obtained in 1976.
The IceCube Neutrino Observatory at the South Pole has measured the diffuse astrophysical neutrino flux up to ∼PeV energies and is starting to identify first point source candidates. The next generation facility, IceCube-Gen2, aims at extending the accessible energy range to EeV in order to measure the continuation of the astrophysical spectrum, to identify neutrino sources, and to search for a cosmogenic neutrino flux. As part of IceCube-Gen2, a radio array is foreseen that is sensitive to detect Askaryan emission of neutrinos beyond ∼30 PeV. Surface and deep antenna stations have different benefits in terms of effective area, resolution, and the capability to reject backgrounds from cosmic-ray air showers and may be combined to reach the best sensitivity. The optimal detector configuration is still to be identified. This contribution presents the full-array simulation efforts for a combination of deep and surface antennas, and compares different design options with respect to their sensitivity to fulfill the science goals of IceCube-Gen2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.