Binder jetting is a layer-based additive manufacturing process for three-dimensional parts in which a print head selectively deposits binder onto a thin layer of powder. After the deposition of the binder, a new layer of powder is applied. This process repeats to create three-dimensional parts. The binder jetting principle can be adapted to many different materials. Its advantages are the high productivity and the high degree of freedom of design without the need for support structures. In this work, the combination of binder jetting and casting is utilized to fabricate metal parts. However, the achieved properties of binder jetting parts limit the potential of this technology, specifically regarding surface quality. The most apparent surface phenomenon is the so-called stair-step effect. It is considered an inherent feature of the process and only treatable by post-processing. This paper presents a method to remove the stair-step effect entirely in a binder jetting process. The result is achieved by controlling the binder saturation of the individual voxel volumes by either over or underfilling them. The saturation is controlled by droplet size variation as well as dithering, creating a controlled migration of the binder between powder particles. This work applies the approach to silica sand particle material with an organic binder for casting molds and cores. The results prove the effectiveness of this approach and outline a field of research not identified previously.
The application of additive-manufactured cores and molds is of great interest for complex cast components. Nevertheless, several challenges still exist in utilizing binder jetting in the multi-step additive manufacturing process for foundry applications to its fullest extent. This contribution shows methods that facilitate the use of 3D-printed sand molds and cores in casting series applications. The binder jetting process itself is assessed from an overall process chain perspective to highlight the benefits of its application in series production. The challenges associated with automating mold cleaning for highly complex casting contours are depicted. In particular, employing the method of cleanable mold partitioning is shown to enhance the automation level of the overall process. Mold design tailored to 3D printing is demonstrated to contribute to overall cost and time savings in enhanced core packages. Topology-optimized, lightweight part designs involving complex freeform surfaces may require mold partitioning associated with laborious burr removal processes. A new approach in answer to the shortage of skilled workers in the harsh and hazardous foundry environment is shown. Implementing motion tracking technology is demonstrated to enable economical automated burr removal for minor quantities or high variant diversity in the future foundry. All the methods shown are of great importance for introducing printed core packages into series production.
Durch den zunehmenden Ausbau der regenerativen Energieerzeugung entstehen immer häufiger Netzengpässe, es steht also mehr Strom zur Verfügung als das Netz transportieren kann. Über das sogenannte Einspeisemanagement, werden die Anlagen dann häufig abgeschaltet. Um die Energiewende ökologisch und ökonomisch zu gestalten, ist es jedoch erforderlich, alternative Lösungen zu finden und zu etablieren. Im vorliegenden Beitrag wird beschrieben, welche Potenziale sich durch das Aufschmelzen von Aluminium direkt am Windrad, mit anschließendem Flüssigmetalltransport zu Gießereien ergeben können. Die Ergebnisse zeigen, dass der Ansatz zur Direktnutzung von Windstrom sowohl eine attraktive Möglichkeit zur Dekarbonisierung der energieintensiven Gießereibranche bietet als auch Kostenvorteile für die Gießereien und dezentralen Schmelzdienstleister erwirken kann.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.