This paper discusses design principles and possible performances of an “in-beam” ultracold neutron (UCN) source for the European Spallation Source (ESS). The key components of the proposed neutron delivery system are nested-mirror optics (NMO), which image the bright neutron emission surface of the large liquid-deuterium moderator, studied within the HighNESS project, onto a remotely located superfluid-helium converter. Bandpass supermirrors, with optional polarization capability, enable the selective transport of those neutrons that are most effective for UCN production, exploiting the single-phonon conversion process that is possible for neutrons having wavelengths within a narrow range centered on 8.9 A ˚. NMO are capable of extracting and refocusing neutrons with small transport losses under the large solid angle available at the ESS Large Beam Port (LBP), allowing the converter to be placed far away from the high-radiation area in the ESS shielding bunker, where the source stays accessible for trouble-shooting while facilitating a low-background environment for nearby UCN experiments. Various configurations of the beam and converter are possible, including a large-volume converter – with or without a magnetic reflector – for a large total UCN production rate, or a beam focused onto a small converter for highest possible UCN density. The source performances estimated by first simulations of a baseline version presented in this paper, including a saturated UCN density on the order of 10 5 cm − 3 , motivate further study and the development of NMO beyond the first prototypes that have been recently investigated experimentally.
Neutron scattering is a well-established tool for the investigation of the static and dynamic properties of condensed matter systems over a wide range of spatial and temporal scales. Many studies of high interest, however, can only be performed on small samples and typically require elaborate environments for variation of parameters such as temperature, magnetic field and pressure. To improve the achievable signal-to-background ratio, focusing devices based on elliptic or parabolic neutron guides or Montel mirrors have been implemented. Here we report an experimental demonstration of a nested mirror optics (NMO), which overcomes some of the disadvantages of such devices. While even simpler than the original Wolter design, our compact assembly of elliptic mirrors images neutrons from a source to a target, minimizing geometric aberrations, gravitational effects and waviness-induced blurring. Experiments performed at MIRA at FRM-II demonstrate the expected focusing properties and a beam transport efficiency of 72 % for our first prototype. NMO seem particularly well-suited to i) extraction of neutrons from compact high-brilliance neutron moderators, ii) general neutron transport, and iii) focusing and polarizing neutrons. The phase space of the neutrons hitting a sample can be tailored on-line to the needed experimental resolution, resulting in small scattering backgrounds. As additional benefits, NMO situated far away from both the moderator and the sample are less susceptible to radiation damage and can easily be replaced. NMO enable a modular and physically transparent realization of beam lines for neutron physics similar to setups used in visible light optics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.