Protamine is a natural cationic peptide mixture used as a drug for the neutralization of heparin and in formulations of slow-release insulin. In addition, Protamine can be used for the stabilization and delivery of nucleic acids (antisense, small interfering RNA (siRNA), immunostimulatory nucleic acids, plasmid DNA, or messenger RNA) and is therefore included in several compositions that are in clinical development. Notably, when mixed with RNA, protamine spontaneously generates particles in the size range of 20-1000 nm depending on the formulation conditions (concentration of the reagents, ratio, and presence of salts). These particles are being used for vaccination and immuno-stimulation. Several grades of protamine are available, and we compared them in the context of complex formation with messenger RNA (mRNA). We found that the different available protamine preparations largely vary in their composition and capacity to transfect mRNA. Our data point to the source of protamine as an important parameter for the production of therapeutic protamine-based complexes.
Histone deacetylase (HDAC) inhibitors, approved for the treatment of cutaneous T-cell lymphoma (CTCL), are non-selective agents associated with an unsatisfactory response and considerable side-effects. Targeting single HDAC isoforms is considered to provide novel therapeutic options. HDAC6 is overexpressed in primary samples from patients with CTCL and preclinical studies using transgenic mice that spontaneously develop a CTCL-like disease, have suggested that combinations including HDAC6 inhibitors may be successful in the treatment of CTCL. PI3K inhibition is currently being tested in clinical trials for CTCL with promising results. Since HDAC6 is known to diminish the activity of Akt via its deacetylation, the aim of the present study was to evaluate the therapeutic potential of selective HDAC6 inhibitors in combination with PI3K inhibitors in CTCL. Through the genetic and pharmacological inhibition of HDAC6, it was demonstrated that combining HDAC6 with PI3K inhibition may be an attractive therapeutic option for patients with CTCL.
Sézary syndrome (SS) is a rare, leukemic type of cutaneous T-cell lymphoma (CTCL), for which extracorporeal photopheresis (ECP) is a first-line therapy. Reliable biomarkers to objectively monitor the response to ECP in patients with SS are missing. We examined the quantitative and qualitative impact of ECP on natural killer (NK) cell activity in SS patients, and especially their functional ability for antibodydependent cell-mediated cytotoxicity (ADCC). Further, we addressed the question whether the magnitude of the effect on ADCC can be associated with the anti-cancer efficacy of ECP in SS patients. We assessed numbers of NK cells, ADCC activity, and treatment response based on blood tumor staging in a cohort of 13 SS patients (8 women, 5 men) treated with ECP as a first-line therapy. Blood samples were collected before treatment start and after an average of 9 months of uninterrupted ECP treatment. NK cell numbers were reduced in SS patients compared to healthy individuals and showed a tendency of recovery after long-term ECP treatment, independent of the clinical response to treatment. Patients with marginal increase (≤1.5 AU-fold) or lack of increase in ADCC activity failed to respond clinically to treatment, while patients with an increased ADCC activity showed a reduction in blood tumor burden. NK-mediated ADCC is selectively enhanced and might be a mechanism underlying the effect of ECP while in addition it can possibly serve as a reliable biomarker to objectively monitor response to ECP in patients with SS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.