Diffusers convert kinetic flow energy into a rise in static pressure. This pressure recovery is the primary aerodynamic design objective for exhaust gas diffusers in power-generating steam and gas turbines. The total pressure loss is an equally important diffuser design parameter. It is strongly linked to the pressure recovery and the residual kinetic energy of the diffuser outlet flow. A reduction benefits the overall thermodynamic cycle, which requires the adjacent components of a diffuser to be included in the design process.
This paper focuses on the total pressure losses in the boundary layer of a highly loaded annular diffuser. Due to its large opening angle the diffuser is susceptible to flow separation under uniform inlet conditions, which is a major source for total pressure losses. However, the unsteady tip leakage vortices of the upstream rotor, which are a source of losses, stabilise the boundary layer and prevent separation. Experiments and unsteady numerical simulation conducted show that the total pressure loss reduction caused by the delayed boundary layer separation exceed the vortex-induced losses by far. This flow interaction between the rotor and diffuser consequently decreases the overall total pressure losses.
The intensity of the tip leakage vortex is linked to three rotor design parameters, namely work coefficient, flow coefficient and reduced blade-passing frequency. Based on these parameters, we propose a semi-empiric correlation to predict and evaluate the change in total pressure losses with regards to design operating conditions.
Active trailing-edge technology is a promising application for localized load alleviation of large-diameter wind turbine rotors, accomplished using one or more control surfaces in the rotor blade's outer region. This work focuses on identifying noise contributions from the flap side-edge and the trailing edge in a laboratory condition.Measurements were conducted in the Acoustic Wind Tunnel Braunschweig (AWB) at the German Aerospace Center's (DLR) Braunschweig site. The small-scale model has a span of 1,200 mm and a chord length of 300 mm. The control surface, a plain flap, has a span of 400 mm and a chord length of 90 mm. Far-field noise was measured using a phased-microphone array for various flow speeds, angles of attack, and flap deflection angles. Due to the size of the model and assumed closeness of the sound sources, two noise reduction addons were installed interchangeably: trailing-edge brush and flap side-edge porous foam for sound source identification. Analysis of the far-field noise reveals that, while changes to the flap deflection angle alter the farfield noise spectra, the trailing-edge noise remains the predominant noise source at deflection angles À5 ∘ and 5 ∘ . No additional noise level was observed from the flap side edge within the measurable frequency range at these angles. The flap side-edge noise has an increased role for frequency larger than 2 kHz for the larger flap deflection angles of À10 ∘ and 10 ∘ .
In this paper, we propose the concept of thermal end-wall contouring (TEWC) as a novel approach to reducing secondary-flow and boundary-layer losses in turbomachines and ducts by means of thermally manipulating the boundary layer. We introduce, for the first time, the general concept of TEWC and provide a proof of concept using the example of a bent duct. The results demonstrate that a considerable impact on the flow field is achieved not only by mean heat flux across the end-wall of the duct, but also by the spatial distribution of the heat fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.