The food processing industry is facing challenges when it comes to the thawing of fish and fish products. These challenges include most importantly the quality of the product to be thawed, the profitability of the operation and to some minor degree the environmental impact of the whole operation. Without doubt, thawing (and freezing) has a large impact on the structure and other quality factors of fish. In addition, both serve as bottlenecks in the production chain with direct effects on the profitability and hence also on the environment, for example, if the thawing process takes longer than necessary, energy is wasted and the quality of the product might suffer. In this concise review, several methods for (industrial) thawing of fish are presented and discussed, mainly with respect to their technical specifications and functional principles. These methods can be divided into two main principal types, namely the ones that provide heat to the frozen fish only via its boundary layers, and the ones that generate heat also in the frozen fish's inner spatial domain. Both types come with advantages and disadvantages; however, the latter types are generally not (yet) suitable for industrial large‐scale operation. The theory, functional principles and advantages/disadvantages will be highlighted in this work. In addition, an outlook on future developments as well as proposals for further research will be provided.
Practical applications
Thawing of fish is a very important step in the production chain from catch to salable product. Freezing serves both as shelf‐life extension for large catches and as a possibility to dampen out seasonal fluctuations of different species to make them available all year round. However, a frozen headed and gutted fish cannot be processed further (e.g., filleted), it has to be thawed to perform further processing of the product.
Abstract-In this paper an approach for optimal boundary control of a parabolic partial differential equation (PDE) is presented. The parabolic PDE is the heat equation for thermal conduction. A technical application for this is the freezing of fish in a vertical plate freezer. As it is a dominant phenomenon in the process of freezing, the latent heat of fusion is included in the model. The aim of the optimization is to freeze the interior of a fish block below −18 o C in a predefined time horizon with an energy consumption that is as low as possible assuming that this corresponds to high freezing temperatures.
In this work the stability properties of a nonlinear partial differential equation (PDE) with state-dependent parameters is investigated. Among other things, the PDE describes freezing of foodstuff, and is closely related to the (Potential) Burgers' Equation. We show that for certain forms of coefficient functions, the PDE converges to a stationary solution given by (fixed) boundary conditions that make physical sense. We illustrate the results with numerical simulations.
In this work, we introduce a simple model for a gravity separator based on first principles.It can be used for controller design to control the levels of oil, water and the gas pressure as well as observer design to estimate unmeasurable parameters and disturbances. Evaluation of separation efficiencies for the respective water-and oil-continuous phases are part of the model in addition. The model incorporates three dynamic state equations describing the levels of the overall liquid (water plus oil) and water as well as the gas pressure subject to the in-and outflow dynamics. Furthermore, algebraic equations calculating simplified droplet distributions for each continuous phase are introduced in order to determine the exchange of water and oil between the two continuous phases. The controllers are of PI-type and control the outflows of the separator. Additionally, we introduce a virtual monitoring approach for the inflows of gas and liquid as well as the effective split ratio of oil and water entering the continuous water phase. Measurements for these variables are either expensive, unreliable or even impossible to take (as for the split ratio). We demonstrate the results in simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.