The Future Fuels project combines research in several institutes of the German Aerospace Center (DLR) on the production and use of synthetic fuels for space, energy, transportation, and aviation. This article gives an overview of the research questions considered and results achieved so far and also provides insight into the multidimensional and interdisciplinary project approach. Various methods and models were used which are embedded in the research context and based on established approaches. The prospects for large-scale fuel production using renewable electricity and solar radiation played a key role in the project. Empirical and model-based investigations of the technological and cost-related aspects were supplemented by modelling of the integration into a future electricity system. The composition, properties, and the related performance and emissions of synthetic fuels play an important role both for potential oxygenated drop-in fuels in road transport and for the design and certification of alternative aviation fuels. In addition, possible green synthetic fuels as an alternative to highly toxic hydrazine were investigated with different tools and experiments using combustion chambers. The results provide new answers to many research questions. The experiences with the interdisciplinary approach of Future Fuels are relevant for the further development of research topics and co-operations in this field.Synthetic fuels based on renewable energies (RE) are widely seen as a key element to achieving climate-neutral transport (e.g., [1,2]). As liquid hydrocarbons have a high energy and power density, they are primarily discussed as fuels for (heavy) road vehicles, ships, and aircraft. Due to their low storage and transport losses, they are also conceivable as a complementary long-term electricity storage option [3]. The challenges of producing and implementing these fuels are manifold. Chemical processes and renewable electrical or thermal energy can be used to produce liquid hydrocarbons from various carbon sources and hydrogen (and sometimes oxygen). Synthetic fuels have several advantages: they can be easily integrated into our existing energy and mobility infrastructures, can be used in all areas of the transport sector, and they can be optimized with regard to their chemical properties. The main disadvantages are the high energy losses and production costs.In this research context, eleven research groups at the German Aerospace Center (DLR) are working together on the Future Fuels project on synthetic fuels. The aim of the interdisciplinary approach is to realize synergies and joint research activities, as well as new research impulses through different perspectives. The scientists and engineers are investigating how synthetic fuels can be produced using solar energy and electrolysis processes (Solar Fuels), and are developing concepts for the re-conversion of these fuels into electricity. They are working on emission-optimized fuels for transport and aviation (Designer Fuels), as well as advanced space ap...
The results from an experimental investigation on an oxygenmethane single-injector combustion chamber are presented. They provide detailed information about the thermal loads at the hot inner walls of the combustion chamber at representative rocket engine conditions and pressures up to 20 bar. The present study aims to contribute to the understanding of the thermal transfer processes and to validate the in-house design tool Thermtest and a base for an attempt to simulate the §ame behavior with large-eddy simulation (LES). Due to the complex §ow phenomena linked to the use of cryogenic propellants, like extreme variation of §ow properties and steep temperature gradients, in combination with intensive chemical reactions, the problem has been partially simpli¦ed by injecting gaseous oxygen (GOx) and gaseous methane (GCH 4 ). external combustion chamber width, m c speci¦c heat capacity, J/(kg·K)' E in total energy entering the control volume, W ' E out total energy leaving the control volume, W
In the current study results from an experimental investigation on an oxygen/methane multi-injector combustion chamber are presented. They provide detailed information about the thermal loads at the hot inner walls of the combustion chamber at representative rocket engine conditions and pressure ranges up to 40 bar. The present study aims to contribute to the understanding of the thermal transfer processes and of the interaction between the injectors and the injector-wall. Furthermore, the test results are used as a test case for the validation of the in-house engineering tool Thermtest. Due to the complex flow phenomena linked to the use of cryogenic propellants, like extreme variation of flow properties and steep temperature gradients, in combination with intensive chemical reactions, the problem has been partially simplified by injecting the propellants in gaseous form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.