Amplification factors are often estimated using empirical methods based on earthquake ground motion; however, especially in low-seismicity urban areas, recording a statistically representative number of high-quality signals may take years. Hence, the attempts to use ambient vibration instead have progressed. This includes the development of the hybrid site-to-reference spectral ratio (SSRh) method that combines earthquake and ambient vibration recordings. We applied the method in the Lucerne area in central Switzerland that is characterized by low-to-moderate seismicity but was struck by several strong earthquakes in historical times (i.e., Mw 5.9 in 1,601) and is located in a glacial basin filled with unconsolidated deposits prone to significant amplification. To develop the high-resolution local site amplification model for the city of Lucerne using the SSRh method, we took advantage of a small seismic monitoring network installed in the Lucerne area in total for about a year and the stations of the Swiss Strong Motion Network (SSMNet). In addition, we performed two extensive surveys to record ambient vibrations and used dozens of measurements performed in the area since 2001. The resulting amplification model referring to the Swiss reference bedrock conditions indicates high-amplification factors (up to 10-fold) for a broad range of frequencies. The model is consistent with geological data and site response proxies such as f0 values. The direct comparison of our results with the SSR amplification functions for several sites shows good agreement. However, the model is characterized by high uncertainty and influenced by daily variation of the noise wavefield, as well as the spatial distribution of the stations of the seismic network. We also discussed the extent of the applicability of the method, concluding that the main factor influencing its performance is not the distance but the similarity of the site condition between the stations.
<p>Estimation of site effects is an essential part of local seismic hazard and risk assessment, especially in densely populated urban areas. The goal of this study is to assess the site response variability in the city of Lucerne (Central Switzerland), located in a basin filled with unconsolidated deposits. Even though it is a low-to-moderate seismicity area, the long-term seismic risk cannot be neglected, in particular, because the region was struck by strong earthquakes in the past (i.e. Mw 5.9 in 1601).</p><p>To determine the spatial distribution of the soil response in the test area, we combined earthquake and ambient noise recordings using the Hybrid Standard Spectral Ratio method (SSRh) introduced by Perron et al. (2018). In the first step, we installed a temporary seismic network to record ground-motion from low-magnitude or distant earthquakes. At selected urban sites inside the sedimentary basin, the dataset was used to estimate the amplification factors with respect to a rock site using the Standard Spectral Ratio approach (SSR - Borcherdt, 1970). Then, a survey including several dozens of densely distributed single-station ambient noise measurements was performed which enabled us to estimate the basin response variability relative to the seismic stations of the temporary seismic network. Finally, we corrected the noise-based evaluation using the SSR amplification functions. To verify the useability of the presented technique in the Lucerne area, we applied the SSRh method also to the temporary stations, the resulting amplification functions largely coincide with the SSR curves. However, the daily variability of the noise wavefield due to human activities can slightly affect the results. We will also discuss the influence of the station distribution and density of the temporary network deployment.</p><p>The amplification model for the Lucerne area estimated using the SSRh method shows consistency with geological data. The results indicate that seismic waves can be amplified up to 10 times in some parts of the basin compared to the rock site. The highest amplification factors are observed for frequencies between 0.8 and 2Hz. This means a local significant increase in seismic hazard.</p><p>The presented work is a part of a detailed site response analysis study for the Lucerne area, considering 2D and 3D site effects and potential non-linear soil behaviour. This PhD project is performed in the framework of the Horizon 2020 ITN funded project URBASIS-EU, which focuses on seismic hazard and risk in urban areas.</p><p>REFERENCES</p><p>Borcherdt, R.D., 1970. Effects of local geology on ground motion near San Francisco Bay. Bull. Seismol. Soc. Am. 60, 29&#8211;61.</p><p>Perron, V., G&#233;lis, C., Froment, B., Hollender, F., Bard, P.-Y., Cultrera, G., Cushing, E.M., 2018. Can broad-band earthquake site responses be predicted by the ambient noise spectral ratio? Insight from observations at two sedimentary basins. Geophys. J. Int. 215, 1442&#8211;1454.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.