We show, within the framework of the massive Euclidean ϕ 4 -quantum field theory in four dimensions, that the Wilson operator product expansion (OPE) is not only an asymptotic expansion at short distances as previously believed, but even converges at arbitrary finite distances. Our proof rests on a detailed estimation of the remainder term in the OPE, of an arbitrary product of composite fields, inserted as usual into a correlation function with further "spectator fields". The estimates are obtained using a suitably adapted version of the method of renormalization group flow equations. Convergence follows because the remainder is seen to become arbitrarily small as the OPE is carried out to sufficiently high order, i.e. to operators of sufficiently high dimension. Our results hold for arbitrary, but finite, loop orders. As an interesting side-result of our estimates, we can also prove that the "gradient expansion" of the effective action is convergent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.