The development of humidity sensors with simple transduction principles attracts considerable interest by both scientific researchers and industrial companies. Capacitive humidity sensors, based on polyimide sensing material with different thickness and surface morphologies, are prepared. The surface morphology of the sensing layer is varied from flat to rough and then to nanostructure called nanograss by using an oxygen plasma etch process. The relative humidity (RH) sensor selectively responds to the presence of water vapor by a capacitance change. The interaction between polyimide and water molecules is studied by FTIR spectroscopy. The complete characterization of the prepared capacitive humidity sensor performance is realized using a gas mixing setup and an evaluation kit. A linear correlation is found between the measured capacitance and the RH level in the range of 5 to 85%. The morphology of the humidity sensing layer is revealed as an important parameter influencing the sensor performance. It is proved that a nanograss-like structure is the most effective for detecting RH, due to its rapid response and recovery times, which are comparable to or even better than the ones of commercial polymer-based sensors. This work demonstrates the readiness of the developed RH sensor technology for industrialization.
Roll-to-roll (R2R) processing on film substrates has been demonstrated to have the potential for achieving high throughput manufacturing of organic electronic systems at low cost. However, the ever-growing mobile devices market accompanied by the developments in information and communication technologies require high performance systems at very low power operation, sometimes on larger substrates having sizes in the range of a few metres. Organic electronics often fall short of fulfilling the required computing performance and power requirements of most of the common use cases. Hybrid integration of inorganic monocrystalline silicon chips on polymer films is a means to fulfil the aforementioned requirements. In this context, it is opportune to report our recent activities on R2R processing of plastic films for hybrid integration of flexible electronics. Hybrid integration can be performed with conventional, rigid surface mount devices as well as flexible, ultrathin bare silicon chips. The first section of the paper is dedicated to a brief overview of R2R manufacturing of electronic devices with an example of production of radio frequency identification tags as well as to a discussion emphasising the targets for hybrid integration. Then, detailed descriptions about our processes for R2R manufacturing of metal wiring lines on films and hybrid integration are included. Three-dimensional integration of films and a temperature sensor label manufactured using hybrid integration process are also elaborated on. Furthermore, key results from fatigue reliability assessment of R2R metallised wiring lines are reported. Finally, some of the challenges in transferring the R2R processes for hybrid integration on film substrates from research labs to industrial manufacturing are highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.