An animal’s behavioral phenotype comprises several traits, which are hierarchically structured in functional units. This is manifested in measured behaviors often being correlated, partly reflecting the need of a coordinated functional response. Unfortunately, we still have limited understanding whether consistent differences in animal behaviors are due to underlying physiological constraints or a result of plastic adaptation to their current environment. Therefore, characterizing the spatial distribution of behaviors can provide important insights into causes and consequences of behavioral variation. In the present study, we quantified behaviors in a wild, free-ranging population of the Neotropical frog Allobates femoralis. We investigated how these behaviors were linked to the frogs’ natural and social environment and quantified the extent to which these behaviors consistently differed among individuals (i.e., animal personality). We assessed levels of aggressiveness, exploration, and boldness by measuring several underlying behaviors expressed in a set of experimental assays, and found evidence for consistent among-individual differences along these axes. Contrary to our expectation, there was no relationship between individual behaviors and their natural environment, but we found a plastic response of males to changes in female density, which might reflect how individuals cope with their socio-ecological environment. Significance statement How are behavioral phenotypes distributed across space? Here, we studied an entire free-ranging population of poison frogs, and investigated if the personality traits aggressiveness, exploration, and boldness are linked to the frogs’ natural or social environment. We found that behavioral traits were non-randomly distributed across the population, suggesting that the spatial arrangement of behavioral traits reflects how individuals cope with their complex natural and social environment.
Amphibian populations have been declining globally over the past decades. The intensification of agriculture, habitat loss, fragmentation of populations and toxic substances in the environment are considered as driving factors for this decline. Today, about 50% of the area of Germany is used for agriculture and is inhabited by a diverse variety of 20 amphibian species. Of these, 19 are exhibiting declining populations. Due to the protection status of native amphibian species, it is important to evaluate the effect of land use and associated stressors (such as road mortality and pesticide toxicity) on the genetic population structure of amphibians in agricultural landscapes. We investigated the effects of viniculture on the genetic differentiation of European common frog (Rana temporaria) populations in Southern Palatinate (Germany). We analyzed microsatellite data of ten loci from ten breeding pond populations located within viniculture landscape and in the adjacent forest block and compared these results with a previously developed landscape permeability model. We tested for significant correlation of genetic population differentiation and landscape elements, including land use as well as roads and their associated traffic intensity, to explain the genetic structure in the study area. Genetic differentiation among forest populations was significantly lower (median pairwise FST = 0.0041 at 5.39 km to 0.0159 at 9.40 km distance) than between viniculture populations (median pairwise FST = 0.0215 at 2.34 km to 0.0987 at 2.39 km distance). Our analyses rejected isolation by distance based on roads and associated traffic intensity as the sole explanation of the genetic differentiation and suggest that the viniculture landscape has to be considered as a limiting barrier for R. temporaria migration, partially confirming the isolation of breeding ponds predicted by the landscape permeability model. Therefore, arable land may act as a sink habitat, inhibiting genetic exchange and causing genetic differentiation of pond populations in agricultural areas. In viniculture, pesticides could be a driving factor for the observed genetic impoverishment, since pesticides are more frequently applied than any other management measure and can be highly toxic for terrestrial life stages of amphibians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.