In this paper we present an efficient discretization method for the solution of the unsteady incompressible Navier-Stokes equations based on a high order (Hybrid) Discontinuous Galerkin formulation. The crucial component for the efficiency of the discretization method is the disctinction between stiff linear parts and less stiff non-linear parts with respect to their temporal and spatial treatment.Exploiting the flexibility of operator-splitting time integration schemes we combine two spatial discretizations which are tailored for two simpler sub-problems: a corresponding hyperbolic transport problem and an unsteady Stokes problem.For the hyperbolic transport problem a spatial discretization with an Upwind Discontinuous Galerkin method and an explicit treatment in the time integration scheme is rather natural and allows for an efficient implementation. The treatment of the Stokes part involves the solution of linear systems. In this case a discretization with Hybrid Discontinuous Galerkin methods is better suited. We consider such a discretization for the Stokes part with two important features: H(div)-conforming finite elements to garantuee exactly divergence-free velocity solutions and a projection operator which reduces the number of globally coupled unknowns. We present the method, discuss implementational aspects and demonstrate the performance on two and three dimensional benchmark problems.
We introduce a new class of unfitted finite element methods with high order accurate numerical integration over curved surfaces and volumes which are only implicitly defined by level set functions. An unfitted finite element method which is suitable for the case of piecewise planar interfaces is combined with a parametric mapping of the underlying mesh resulting in an isoparametric unfitted finite element method. The parametric mapping is constructed in a way such that the quality of the piecewise planar interface reconstruction is significantly improved allowing for high order accurate computations of (unfitted) domain and surface integrals. This approach is new. We present the method, discuss implementational aspects and present numerical examples which demonstrate the quality and potential of this method.
We present a new high order finite element method for the discretization of partial differential equations on stationary smooth surfaces which are implicitly described as the zero level of a level set function. The discretization is based on a trace finite element technique. The higher discretization accuracy is obtained by using an isoparametric mapping of the volume mesh, based on the level set function, as introduced in [C. Lehrenfeld, High order unfitted finite element methods on level set domains using isoparametric mappings, Comp. Meth. Appl. Mech. Engrg. 2016]. The resulting trace finite element method is easy to implement. We present an error analysis of this method and derive optimal order H 1 (Γ)-norm error bounds. A second topic of this paper is a unified analysis of several stabilization methods for trace finite element methods. Only a stabilization method which is based on adding an anisotropic diffusion in the volume mesh is able to control the condition number of the stiffness matrix also for the case of higher order discretizations. Results of numerical experiments are included which confirm the theoretical findings on optimal order discretization errors and uniformly bounded condition numbers.
The paper introduces a new finite element numerical method for the solution of partial differential equations on evolving domains. The approach uses a completely Eulerian description of the domain motion. The physical domain is embedded in a triangulated computational domain and can overlap the time-independent background mesh in an arbitrary way. The numerical method is based on finite difference discretizations of time derivatives and a standard geometrically unfitted finite element method with an additional stabilization term in the spatial domain. The performance and analysis of the method rely on the fundamental extension result in Sobolev spaces for functions defined on bounded domains. This paper includes a complete stability and error analysis, which accounts for discretization errors resulting from finite difference and finite element approximations as well as for geometric errors coming from a possible approximate recovery of the physical domain. Several numerical examples illustrate the theory and demonstrate the practical efficiency of the method.
In the context of unfitted finite element discretizations the realization of high order methods is challenging due to the fact that the geometry approximation has to be sufficiently accurate. We consider a new unfitted finite element method which achieves a high order approximation of the geometry for domains which are implicitly described by smooth level set functions. The method is based on a parametric mapping which transforms a piecewise planar interface reconstruction to a high order approximation. Both components, the piecewise planar interface reconstruction and the parametric mapping are easy to implement. In this paper we present an a priori error analysis of the method applied to an interface problem. The analysis reveals optimal order error bounds for the geometry approximation and for the finite element approximation, for arbitrary high order discretization. The theoretical results are confirmed in numerical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.