Hole transport materials (HTM) are an important component in perovskite solar cells (PSC). Despite a multitude of HTMs developed in recent years, only few of them lead to solar cells with efficiencies over 20%. Therefore, it is still a challenge to develop high‐performing HTMs, which have ideal energy levels of the frontier orbitals, are highly efficient in transporting charges, and stabilize the solar cell at the same time. In this work, the development of a structurally novel molecular HTM, CPDA 1, is described which is based on a common cyclopentadiene core and can be efficiently and inexpensively synthesized from readily available starting materials, which is important for future realization of low‐cost photovoltaics on larger scale. Due to excellent optoelectronic, thermal, and transport properties, CPDA 1 not only meets the envisioned properties by reaching high efficiencies of 23.1%, which is among the highest reported to date, but also contributes to a respectable long‐term stability of the PSCs.
Interfacing the surface of an organic semiconductor with biological elements is a central quest when it comes to the development of efficient organic bioelectronic devices. Here, we present the first example of “clickable” organic electrochemical transistors (OECTs). The synthesis and characterization of an azide-derivatized EDOT monomer (azidomethyl-EDOT, EDOT-N3) are reported, as well as its deposition on Au-interdigitated electrodes through electropolymerization to yield PEDOT-N3-OECTs. The electropolymerization protocol allows for a straightforward and reliable tuning of the characteristics of the OECTs, yielding transistors with lower threshold voltages than PEDOT-based state-of-the-art devices and maximum transconductance voltage values close to 0 V, a key feature for the development of efficient organic bioelectronic devices. Subsequently, the azide moieties are employed to click alkyne-bearing molecules such as redox probes and biorecognition elements. The clicking of an alkyne-modified PEG4-biotin allows for the use of the avidin–biotin interactions to efficiently generate bioconstructs with proteins and enzymes. In addition, a dibenzocyclooctyne-modified thrombin-specific HD22 aptamer is clicked on the PEDOT-N3-OECTs, showing the application of the devices toward the development of organic transistors-based biosensors. Finally, the clicked OECTs preserve their electronic features after the different clicking procedures, demonstrating the stability and robustness of the fabricated transistors.
We report on results of a detailed scanning tunnelling microscopy study on the formation, size and size distribution, and internal structure of small bimetallic PtRu clusters on a graphene monolayer film supported on a Ru(0001) substrate. These clusters, with sizes around ∼15 (Ru) or ∼40 (Pt) atoms per cluster at the lowest coverage, are interesting model systems for the catalytic behaviour of small metal PtRu particles, for example for application in electrocatalytic oxidation reactions. The clusters were generated by sequential deposition of the two metals at room temperature. The data reveal a distinct influence of the deposition sequence on the cluster formation process, with Ru pre-deposition followed by Pt deposition leading to predominantly bimetallic clusters, possibly with a core-shell-type structure, while the reverse sequence results in co-existent mono- and bimetallic clusters, where the latter are likely to intermix at the interface. The observations are related to the nucleation process of the respective metals on the templated surface, and the 2D growth behaviour of the two metals.
The exploration of innovative chemical space is a critical step in the early phases of drug discovery. Bis-spirocyclic frameworks occur in natural products and other biologically relevant metabolites and show attractive features, such as molecular compactness, structural complexity, and three-dimensional character. A concise approach to the synthesis of bis-spirocyclic-based compound libraries starting from readily available commercial reagents and robust chemical transformations has been developed. A number of novel bis-spirocyclic scaffold examples, as implemented in the European Lead Factory project, is presented.
A novel and versatile method for the N‐arylation of dithieno[3,2‐b:2′,3′‐d]pyrrole (DTP) is presented. By Pd‐ or Cu‐catalyzed coupling a variety of arenes and acenes were directly attached at the DTP−nitrogen yielding a variety of functionalized DTPs. Investigations on optical and redox properties led to valuable structure‐property relationships, which were corroborated by quantum chemical calculations. Further functionalization and elongation of the conjugation of an acceptor‐substituted DTP was elaborated to result in complex cruciform‐type donor−acceptor oligomers, which were investigated and implemented in single material organic solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.