Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.
The aerothermal interaction of the combustor exit flow on the first vane row has been examined at the Large Scale Turbine Rig (LSTR) at Technische Universität Darmstadt (Darmstadt, Germany). A baseline configuration of axial inflow and a variation of swirling combustor inflow have been studied. The nozzle guide vane (NGV) featured endwall cooling, airfoil film cooling and a trailing edge slot ejection as well as NGV-rotor wheel space purge flow. CO 2 is injected for coolant flow tracing. The results are compared to five hole probe (5HP) measurements. The experiments for the baseline configuration are accompanied by numerical simulations using a passive scalar tracking method to validate the results and study the propagation of the coolant flow. The endwall coolant injection is detected to influence the pressure losses in the NGV. It has an impact on the Trailing Edge (TE) coolant ejection as well. For swirling combustor inflow, increased NGV pressure losses and increased mixing of Rear Inner Discharge Nozzle (RIDN) coolant and main flow is observed. An influence of the clocking position of the swirler to the vane is detected. Additional losses within the NGV row can be assigned to the swirler by means of flow tracing.
High pressure turbines are nowadays designed to a point where most design enhancements only yield marginal efficiency improvements. This challenges research facilities to reliably resolve ever smaller differences in efficiency caused by individual design changes. In recent years, immense efforts towards such highly accurate delta-efficiency measurements have been undertaken at the Large Scale Turbine Rig (LSTR). This paper comprises an overview of the applied methodology and the achievements on the basis of various validation cases. By thoroughly controlling the operation point and accounting for all variables affecting the efficiency η, the rig can resolve efficiency-differences Δη of ±0.1 % for a single day measurement. Four benchmark cases are investigated to validate the rig’s capabilities. First, the influence of tip clearance is investigated for a squealer-type geometry for swirling inflow. It is found that for an increase in tip clearance of 1 %, η is decreased by 2.68 %. Then, it is shown that a winglet-type tip geometry may improve the efficiency by Δη 0.33% in comparison to the squealer tip. Third, it is shown that these trends are similar for plain inflow, however swirl decreases efficiency by up to 1.25 % in comparison to plain inflow. Finally, the clocking-position of the combustor-module relative to the nozzle guide vanes is varied leading to efficiency differences of up to 0.52 %.
Low pressure turbines typically operate in the low Reynolds number regime. Depending on the loading of the blade, they may exhibit detached flow with associated reattachment in the rear part of the suction surface. Additionally, the flow is highly time-dependent due to the sequence of rotating and stationary blade rows. The work presented in this paper covers experimental efforts taken to investigate this type of flow in detail. Typical low pressure turbine flow conditions have been chosen as baseline for the experimental work. A pressure distribution has been created on a flat plate by means of a contoured upper wall in a low speed wind tunnel. The distribution matches the one of the Pak-B airfoil. Unsteadiness is then superimposed in two ways: A specific unsteadiness was created by using a rotating flap (RF) downstream of the test section. This results in almost sinusoidal periodic unsteady flow across the plate, simulating the interaction between stator and rotor of a turbine stage. Furthermore, pulsed blowing by vortex generating jets (VGJ) upstream of the suction peak was used to influence the transition process and development of the separation bubble. Measurements have been performed with hot-wire anemometry. Experimental results are presented to compare both forcing mechanisms. In sinusoidal unsteady main flow, the transition occurs naturally by the breakdown of the shear layer instability, which is affected by periodic changes in the overall Reynolds number and thus pressure gradient. In opposition, active flow control (AFC) by VGJ triggers the transition process by impulse and vorticity injection into the boundary layer, while maintaining a constant Reynolds number. The flow fields are compared using phase averaged data of velocity und turbulence intensity as well as boundary layer parameters, namely shape factor and momentum thickness Reynolds number. Finally, a model to describe the time mean intermittency distribution is refined to fit the data.
Shroudless rotor blades are state of the art in modern high pressure turbines. Tip leakage flow has a crucial impact on turbine efficiency. Specific blade tip designs are a key factor to handle tip leakage losses by controlling tip leakage flow and its re-entry into the rotor passage. Comparative measurements of a cavity squealer type tip and a notch type tip have been conducted at the Large Scale Turbine Rig at TU Darmstadt. The test rig has been operated at the blade tips design point. Experimental data has been acquired at rotor inlet and outlet as well as within the rotor passage. For cavity squealer tips a tip leakage vortex develops at the suction side as the tip leakage flow is rolled-up and further mixed with main annulus flow. The tip leakage vortex determines the blockage of main annulus flow at the blade tip. The design of the suction side of the notch tip benefits a jet-like re-entry of tip leakage flow into the passage. Results are a vortex system with smaller scaled vortices and a more homogeneous mass flow redistribution in the outer annulus of the rotor. The zone of affected main annulus flow at the blade tip increases through the dominant tip leakage jet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.