For haul truck drivers it is becoming increasingly difficult to find appropriate parking at the end of a shift. Proper, legal, and safe overnight parking spots are crucial for truck drivers in order for them to be able to comply with Hours of Service regulation, reduce fatigue, and improve road safety. The lack of parking spaces affects the backbone of the economy because 70% of all United States domestic freight shipments (in terms of value) are transported by trucks. Many research projects provide real-time truck parking occupancy information at a given stop. However, truck drivers ultimately need to know whether parking spots will be available at a downstream stop at their expected arrival time. We propose a machine-learning-based model that is capable of accurately predicting occupancy 30, 60, 90, and 120 min ahead. The model is based on the fusion of Extreme Gradient Boosting (XGBoost) and Long Short-Term Memory (LSTM) with the help of a feed-forward neural network. Our results show that prediction of truck parking occupancy can be achieved with small errors. Root mean square error metrics are 2.1, 2.9, 3.5, and 4.1 trucks for the four different horizons, respectively. The unique feature of our proposed model is that it requires only historic occupancy data. Thus, any truck occupancy detection system could also provide forecasts by implementing our model.
Die vorliegende Arbeit richtet sich an Ingenieure und Wissenschaftler in den Bereichen Kryptografie und Mobilkommunikation. Sie stellt ein Fahrzeugleitsystem vor, das mit seiner Kommunikationsarchitektur post-quanten-sichere Kryptografie und Nachrichtenübertragung bei
harten Echtzeitbedingungen ermöglicht. Grundlage ist eine genaue Analyse bestehender Standards und die Schlussfolgerung, dass existierende Ansätze diese nicht erfüllen. Die Kommunikationsarchitektur macht sich das Prinzip der perfekt sicheren Einmalverschlüsselung zu Nutze und löst den Schlüsselaustausch durch eine an den Anwendungsfall angepasste Organisationsstruktur.
Eine detaillierte Berechnung des benötigten Schlüsselbedarfs beweist die grundsätzliche Eignung der perfekt sicheren Einmalverschlüsselung für die Automatisierungstechnik. Das Fahrzeugleitsystem erfüllt weitestgehend die von der Europäischen Kommission
aktuell erarbeiteten Anforderungen an das ethische Verhalten vernetzter und autonomer Syste...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.