is among the most prevalent protozoan parasites, which infects a wide range of organisms, including one-third of the human population. Its rapid intracellular replication within a vacuole requires efficient synthesis of glycerophospholipids. Cytidine diphosphate-diacylglycerol (CDP-DAG) serves as a major precursor for phospholipid synthesis. Given the peculiarities of lipid biogenesis, understanding the mechanism and physiological importance of CDP-DAG synthesis is particularly relevant in Here, we report the occurrence of two phylogenetically divergent CDP-DAG synthase (CDS) enzymes in the parasite. The eukaryotic-typeCDS1 and the prokaryotic-type CDS2 reside in the endoplasmic reticulum and apicoplast, respectively. Conditional knockdown ofCDS1 severely attenuated the parasite growth and resulted in a nearly complete loss of virulence in a mouse model. Moreover, mice infected with the CDS1 mutant became fully resistant to challenge infection with a hyper-virulent strain of The residual growth of the CDS1 mutant was abolished by consecutive deletion ofCDS2. Lipidomic analyses of the two mutants revealed significant and specific declines in phosphatidylinositol and phosphatidylglycerol levels upon repression of CDS1 and after deletion ofCDS2, respectively. Our data suggest a "division of labor" model of lipid biogenesis in in which two discrete CDP-DAG pools produced in the endoplasmic reticulum and apicoplast are subsequently used for the synthesis of phosphatidylinositol in the Golgi bodies and phosphatidylglycerol in the mitochondria. The essential and divergent nature of CDP-DAG synthesis in the parasite apicoplast offers a potential drug target to inhibit the asexual reproduction of.
The genus Brucella currently comprises twelve species of facultative intracellular bacteria with variable zoonotic potential. Six of them have been considered as classical, causing brucellosis in terrestrial mammalian hosts, with two species originated from marine mammals. In the past fifteen years, field research as well as improved pathogen detection and typing have allowed the identification of four new species, namely Brucella microti, Brucella inopinata, Brucella papionis, Brucella vulpis, and of numerous strains, isolated from a wide range of hosts, including for the first time cold-blooded animals. While their genome sequences are still highly similar to those of classical strains, some of them are characterized by atypical phenotypes such as higher growth rate, increased resistance to acid stress, motility, and lethality in the murine infection model. In our review, we provide an overview of state-of-the-art knowledge about these novel Brucella sp., with emphasis on their phylogenetic positions in the genus, their metabolic characteristics, acid stress resistance mechanisms, and their behavior in well-established in cellulo and in vivo infection models. Comparison of phylogenetic classification and phenotypical properties between classical and novel Brucella species and strains finally lead us to propose a more adapted terminology, distinguishing between core and non-core, and typical versus atypical brucellae, respectively.
Toxoplasma gondii ( T. gondii ) is an obligate intracellular parasite and belongs to the phylum Apicomplexa. T. gondii is of medical and veterinary importance, because T. gondii causes the parasitic disease toxoplasmosis. In human cells, the interferon-gamma inducible indoleamine 2,3-dioxygenase 1 (IDO1) is an antimicrobial effector mechanism that degrades tryptophan to kynurenine and thus limits pathogen proliferation in vitro . Furthermore, IDO is described to have immunosuppressive properties, e.g., regulatory T cell differentiation and T cell suppression in humans and mice. However, there is only little known about the role of IDO1 in mice during acute toxoplasmosis. To shed further light on the role of mIDO1 in vivo , we have used a specifically adjusted experimental model. Therein, we infected mIDO1-deficient (IDO −/− ) C57BL/6 mice and appropriate wild-type (WT) control mice with a high dose of T. gondii ME49 tachyozoites (type II strain) via the intraperitoneal route and compared the phenotype of IDO −/− and WT mice during acute toxoplasmosis. During murine T. gondii infection, we found mIDO1 mRNA and mIDO1 protein, as well as mIDO1-mediated tryptophan degradation in lungs of WT mice. IDO −/− mice show no tryptophan degradation in the lung during infection. Even though T. gondii is tryptophan auxotroph and rapidly replicates during acute infection, the parasite load was similar in IDO −/− mice compared to WT mice 7 days post-infection. IDO1 is described to have immunosuppressive properties, and since T cell suppression is observed during acute toxoplasmosis, we analyzed the possible involvement of mIDO1. Here, we did not find differences in the intensity of ex vivo mitogen stimulated T cell proliferation between WT and IDO −/− mice. Concomitant nitric oxide synthase inhibition and interleukin-2 supplementation increased the T cell proliferation from both genotypes drastically, but not completely. In sum, we analyzed the involvement of mIDO1 during acute murine toxoplasmosis in our specifically adjusted experimental model and found a definite mIDO1 induction. Nevertheless, mIDO1 seems to be functional redundant as an antiparasitic defense mechanism during acute toxoplasmosis in mice. Furthermore, we suggest that the systemic T cell suppression observed during acute toxoplasmosis is influenced by nitric oxide activity and IL-2 deprivation.
Human retinal pigment epithelial (hRPE) cells are important for the establishment and maintenance of the immune privilege of the eye. They function as target cells for human cytomegalovirus (hCMV), but are able to restrict viral replication. hCMV causes opportunistic posterior uveitis such as retinitis and chorioretinitis. Both mainly occur in severely immunocompromised patients and rarely manifest in immunocompetent individuals. In this study, hRPE cells were infected with hCMV in vitro and activated with proinflammatory cytokines. The enzymatic activities of indoleamine 2,3-dioxygenase-1 (IDO1) and inducible nitric oxide synthase (iNOS) were determined. The antimicrobial capacity of both molecules was analyzed in co-infection experiments using Staphylococcus aureus (S. aureus) and Toxoplasma gondii (T. gondii), causing uveitis in patients. We show that an hCMV infection of hRPE cells blocks IDO1 and iNOS mediated antimicrobial defense mechanisms necessary for the control of S. aureus and T. gondii. hCMV also inhibits immune suppressive effector mechanisms in hRPE. The interferon gamma-induced IDO1 dependent immune regulation was severely blocked, as detected by the loss of T cell inhibition. We conclude that an active hCMV infection in the eye might favor the replication of pathogens causing co-infections in immunosuppressed individuals. An hCMV caused blockade of IDO1 might weaken the eye’s immune privilege and favor the development of post-infectious autoimmune uveitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.