The RNase activity of the envelope glycoprotein E rns of the pestivirus bovine viral diarrhea virus (BVDV) is required to block type I interferon (IFN) synthesis induced by single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) in bovine cells. Due to the presence of an unusual membrane anchor at its C terminus, a significant portion of E rns is also secreted. In addition, a binding site for cell surface glycosaminoglycans is located within the C-terminal region of E rns . Here, we show that the activity of soluble E rns as an IFN antagonist is not restricted to bovine cells. Extracellularly applied E rns protein bound to cell surface glycosaminoglycans and was internalized into the cells within 1 h of incubation by an energy-dependent mechanism that could be blocked by inhibitors of clathrin-dependent endocytosis. E rns mutants that lacked the C-terminal membrane anchor retained RNase activity but lost most of their intracellular activity as an IFN antagonist. Surprisingly, once taken up into the cells, E rns remained active and blocked dsRNA-induced IFN synthesis for several days. Thus, we propose that E rns acts as an enzymatically active decoy receptor that degrades extracellularly added viral RNA mainly in endolysosomal compartments that might otherwise activate intracellular pattern recognition receptors (PRRs) in order to maintain a state of innate immunotolerance.
IMPORTANCEThe pestiviral RNase E rns was previously shown to inhibit viral ssRNA-and dsRNA-induced interferon (IFN) synthesis. However, the localization of E rns at or inside the cells, its species specificity, and its mechanism of interaction with cell membranes in order to block the host's innate immune response are still largely unknown. Here, we provide strong evidence that the pestiviral RNase E rns is taken up within minutes by clathrin-mediated endocytosis and that this uptake is mostly dependent on the glycosaminoglycan binding site located within the C-terminal end of the protein. Remarkably, the inhibitory activity of E rns remains for several days, indicating the very potent and prolonged effect of a viral IFN antagonist. This novel mechanism of an enzymatically active decoy receptor that degrades a major viral pathogen-associated molecular pattern (PAMP) might be required to efficiently maintain innate and, thus, also adaptive immunotolerance, and it might well be relevant beyond the bovine species.
The early steps of human parvovirus B19 (B19V) infection were investigated in UT7/Epo cells. B19V and its receptor globoside (Gb4Cer) associate with lipid rafts, predominantly of the noncaveolar type. Pharmacological disruption of the lipid rafts inhibited infection when the drug was added prior to virus attachment but not after virus uptake. B19V is internalized by clathrin-dependent endocytosis and spreads rapidly throughout the endocytic pathway, reaching the lysosomal compartment within minutes, where a substantial proportion is degraded. B19V did not permeabilize the endocytic vesicles, indicating a mechanism of endosomal escape without apparent membrane damage. Bafilomycin A
1
(BafA1) and NH
4
Cl, which raise endosomal pH, blocked the infection by preventing endosomal escape, resulting in a massive accumulation of capsids in the lysosomes. In contrast, in the presence of chloroquine (CQ), the transfer of incoming viruses from late endosomes to lysosomes was prevented; the viral DNA was not degraded; and the infection was boosted. In contrast to the findings for untreated or BafA1-treated cells, the viral DNA was progressively associated with the nucleus in CQ-treated cells, reaching a plateau by 3 h postinternalization, a time coinciding with the initiation of viral transcription. At this time, more than half of the total intracellular viral DNA was associated with the nucleus; however, the capsids remained extranuclear. Our studies provide the first insight into the early steps of B19V infection and reveal mechanisms involved in virus uptake, endocytic trafficking, and nuclear penetration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.