We develop a Bayesian framework for sensing which adapts the sensing time and/or basis functions to the instantaneous sensing quality measured in terms of the expected posterior mean-squared error. For sparse Gaussian sources a significant reduction in average sensing time and/or mean-squared error is achieved in comparison to nonadaptive sensing. For compression ratio 3, a sparse 10% Gaussian source and equal average sensing times, the proposed method gains about 2 dB over the performance bound of optimum compressive sensing, about 3 dB over non-adaptive 3-fold oversampled orthogonal sensing and about 6 to 7 dB to LASSO-based recovery schemes while enjoying polynomial time complexity.We utilize that in the presence of Gaussian noise the mean-squared error conditioned on the current observation is proportional to the derivative of the conditional mean estimate with respect to this observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.