Abstract. Application of the environmentally friendly scaling inhibitor NC47.1 B in geothermal systems was studied in laboratory and field-scale experiments. Biodegradation was investigated under anaerobic, in situ-like conditions and a mass balance confirmed the almost complete conversion of the polycarboxylate to e.g. acetate, formate, methane and CO2. Much higher concentrations of inhibitor were chosen than applied in situ and rapid degradation was observed in biofilm-inoculated setups: A concentration of 100 mg/L of the inhibitor was degraded below detection limit within 8 d of incubation. Furthermore, the inhibitor was applied at the geothermal plant in Unterhaching, Germany. Monitoring of the microbial community in situ showed an increase in the abundance of Bacteria. Particularly, relatives of the fermenting Caldicellulosiruptor dominated the biocenosis after about six months of continuous inhibitor dosage (5–10 mg/L). However, in long-term laboratory experiments representatives of Caldicellulosiruptor were only detected in traces and the microbial community comprised a broader spectrum of fermentative bacteria. The different composition of the biocenosis in situ and in laboratory experiments is probably caused by the different inhibitor concentrations, temperatures as well as nutrient availability in situ compared to the closed system of the batch experiments.
<p>The economic and technical efficiency of geothermal plants is often impaired by corrosion, scaling and biological fouling. In Germany, the highly saline fluid of the North German Basin is known to cause severe corrosion. Meanwhile geothermal plants in the southern Molasse Basin, one of the most extensively exploited geothermal regions in Germany, are troubled by carbonate scaling. One possible solution is the employment of a scale inhibitor. A novel scaling inhibitor is evaluated in field- and laboratory tests. This inhibitor consists of a polysaccharide backbone structure and branches of polyacrylic- and maleic acid copolymer.</p><p>The laboratory tests with different scaling inhibitor concentrations were designed to observe the biodegradation of the scaling inhibitor in an anaerobic environment similar to the conditions found in heat exchangers of geothermal plants. The concentration of inhibitor was quantified by UV/VIS and liquid chromatography (LC). Molecular biological techniques (PCR, DGGE, Microbiome analysis) were used to characterize the biocenosis on metal surfaces and in fluids of the experiments.</p><p>During the experiment the concentration of inhibitor decreased up to &#160;3 % of the initial concentration. The formation of methane and acetate was observed which indicates a biological degradation by acetoclastic methanogenesis. Hydrogen formation was observed in setups containing steel coupons. This implies that hydrogen is primarily formed by corrosion processes and in tests with active microorganisms hydrogen was consumed completely. Various fermentative bacteria classified as Clostridia and Firmicutes as well as methanogenic archaea were identified. In some experiments sulfate reducing bacteria were found. Those are well known to catalyze corrosion processes.</p><p>Results of field experiments in a bypass system as well as microbiological monitoring of the inhibitor application in geothermal plant located in the molasse basin will be presented.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.