Polaritons formed by the coupling of light and material excitations enable light-matter interactions at the nanoscale beyond what is currently possible with conventional optics. However, novel techniques are required to control the propagation of polaritons at the nanoscale and to implement the first practical devices. Here we report the experimental realization of polariton refractive and meta-optics in the mid-infrared by exploiting the properties of low-loss phonon polaritons in isotopically pure hexagonal boron nitride interacting with the surrounding dielectric environment comprising the low-loss phase change material Ge3Sb2Te6. We demonstrate rewritable waveguides, refractive optical elements such as lenses, prisms, and metalenses, which allow for polariton wavefront engineering and sub-wavelength focusing. This method will enable the realization of programmable miniaturized integrated optoelectronic devices and on-demand biosensors based on high quality phonon resonators.
Controlling a state of material between its crystalline and glassy phase has fostered many real-world applications. Nevertheless, design rules for crystallization and vitrification kinetics still lack predictive power. Here, we identify stoichiometry trends for these processes in phase change materials, i.e. along the GeTe-GeSe, GeTe-SnTe, and GeTe-Sb2Te3 pseudo-binary lines employing a pump-probe laser setup and calorimetry. We discover a clear stoichiometry dependence of crystallization speed along a line connecting regions characterized by two fundamental bonding types, metallic and covalent bonding. Increasing covalency slows down crystallization by six orders of magnitude and promotes vitrification. The stoichiometry dependence is correlated with material properties, such as the optical properties of the crystalline phase and a bond indicator, the number of electrons shared between adjacent atoms. A quantum-chemical map explains these trends and provides a blueprint to design crystallization kinetics.
Phase change memory (PCM) offers remarkable features such as high-speed and non-volatility for universal memory. Yet, simultaneously achieving better thermal stability and fast switching remains a key challenge. Thus, exploring novel materials with improved characteristics is of utmost importance. We report here, a unique property-portfolio of high thermal stability and picosecond threshold switching characteristics in In3SbTe2 (IST) PCM devices. Our experimental findings reveal an improved thermal stability of amorphous IST compared to most other phase change materials. Furthermore, voltage dependent threshold switching and current-voltage characteristics corroborate an extremely fast, yet low electric field threshold switching operation within an exceptionally small delay time of less than 50 picoseconds. The combination of low electric field and high speed switching with improved thermal stability of IST makes the material attractive for next-generation high-speed, non-volatile memory applications.
Dielectric properties of water-in-oil emulsions, oil in water emulsions and limestone-in-water suspensions have been measured at 2.45 GHz by an open-ended coaxial-line probe. The results were compared to various equations for the dielectric properties of mixtures. The equation by Fricke and Mudgett describes best the behavior of oil-in-water emulsions and limestone in water suspensions. For water-in-oil emulsions the equation by Lichtenecker and Rother gives the best results.
Selective laser sintering (SLS) is currently in transition to the production of functional components. However, the ability to apply it is confronted with new requirements for reliability and reproducibility. Therefore, an in-depth understanding of aging processes in polymers is essential. Regarding material traceability as well as defective component identification with subsequent cause tracing, the application of a material-inherent marking technology represents a solution. SLS in combination with modified polymers as a marking technology proves to be an efficient opportunity to produce reproducible and high-quality components due to an increased understanding of the process. Based on a selection of modified polymers for use in SLS, which were characterized in part I of the study, this work focuses on the experimental validation of the result. The influence of modified polymers on materials and component properties and the SLS process’s influence on the traceability of modified polymers are examined. Intrinsic and extrinsic material properties as well as mechanical properties, surface quality and sinter density are analyzed. No discernible influences of the modified polymers on the investigated properties could be observed and the traceability of the modified polymers could also be confirmed in the aged powder and component using mass spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.