This paper investigates two main features of the human head which influence the measured attenuation of circumaural and intraaural hearing protection devices (HPDs): the external ear and the different pathways of bone conduction. A theoretical model for the external ear shows that its influence on the insertion loss of HPDs, on the sensitivity level of headphones or earphones, and on the insertion gain of hearing aids, all can be described by one equation. While it is not necessary to simulate the eardrum impedance in order to measure the insertion loss of earmuffs and the sensitivity level of headphones with acoustical test fixtures (ATFs), the required accuracy of an ear simulator is more stringent when the same measurements are performed on intraaural devices. For the evaluation of HPDs, bone conduction plays an important role. We have developed a model to estimate HPD-dependent bone conduction effects. The model includes two bone conduction sources: one in the external ear and one in the middle ear. The model explains, for example, the occlusion effect of HPDs and the masking error at low frequencies due to physiological noise that arises when real-ear attenuation at threshold (REAT) measurements are made. Consequently, objectively measured insertion loss can now be used to predict REAT with improved accuracy. ATF and REAT data are compared using nine earmuffs and nine earplugs. In the majority of cases, the two sets of data agree well. Discrepancies are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.