Answer Set Programming (ASP) is a well-known problem solving approach based on nonmonotonic logic programs and efficient solvers. To enable access to external information, HEX-programs extend programs with external atoms, which allow for a bidirectional communication between the logic program and external sources of computation (e.g., description logic reasoners and Web resources). Current solvers evaluate HEX-programs by a translation to ASP itself, in which values of external atoms are guessed and verified after the ordinary answer set computation. This elegant approach does not scale with the number of external accesses in general, in particular in presence of nondeterminism (which is instrumental for ASP). In this paper, we present a novel, native algorithm for evaluating HEX-programs which uses learning techniques. In particular, we extend conflict-driven ASP solving techniques, which prevent the solver from running into the same conflict again, from ordinary to HEX-programs. We show how to gain additional knowledge from external source evaluations and how to use it in a conflict-driven algorithm. We first target the uninformed case, i.e., when we have no extra information on external sources, and then extend our approach to the case where additional meta-information is available. Experiments show that learning from external sources can significantly decrease both the runtime and the number of considered candidate compatible sets.
HEX-programs extend logic programs under the answer set semantics with external computations through external atoms. As reasoning from ground Horn programs with nonmonotonic external atoms of polynomial complexity is already on the second level of the polynomial hierarchy, minimality checking of answer set candidates needs special attention. To this end, we present an approach based on unfounded sets as a generalization of related techniques for ASP programs. The unfounded set detection is expressed as a propositional SAT problem, for which we provide two different encodings and optimizations to them. We then integrate our approach into a previously developed evaluation framework for HEX-programs, which is enriched by additional learning techniques that aim at avoiding the reconstruction of the same or related unfounded sets. Furthermore, we provide a syntactic criterion that allows one to skip the minimality check in many cases. An experimental evaluation shows that the new approach significantly decreases runtime.
Abstract-Cloud computing is a novel computing paradigm that offers data, software, and hardware services in a manner similar to traditional utilities such as water, electricity, and telephony. Usually, in Cloud and Grid computing, contracts between traders are established using Service Level Agreements (SLAs), which include objectives of service usage. However, due to the rapidly growing number of service offerings and the lack of a standard for their specification, manual service selection is a costly task, preventing the successful implementation of ubiquitous computing on demand. In order to counteract these issues, automatic methods for matching SLAs are necessary. In this paper, we introduce a method for finding semantically equal SLA elements from differing SLAs by utilizing several machine learning algorithms. Moreover, we utilize this method to enable automatic selection of optimal service offerings for Cloud and Grid users. Finally, we introduce a framework for automatic SLA management, present a simulation-based evaluation, and demonstrate several significant benefits of our approach for Cloud and Grid users.
Answer Set Programming is a well-established paradigm of declarative programming in close relationship with other declarative formalisms such as SAT Modulo Theories, Constraint Handling Rules, PDDL and many others. Since its first informal editions, ASP systems are compared in the nowadays customary ASP Competition. The fourth ASP Competition, held in 2012/2013, is the sequel to previous editions and it was jointly organized by University of Calabria (Italy) and the Vienna University of Technology (Austria). Participants competed on a selected collection of benchmark problems, taken from a variety of research areas and real world applications. The Competition featured two tracks: the Model& Solve Track, held on an open problem encoding, on an open language basis, and open to any kind of system based on a declarative specification paradigm; and the System Track, held on the basis of fixed, public problem encodings, written in a standard ASP language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.