Predictive coding theories posit that neural networks learn statistical regularities in the environment for comparison with actual outcomes, signaling a prediction error (PE) when sensory deviation occurs. PE studies in audition have capitalized on low-frequency event-related potentials (LF-ERPs), such as the mismatch negativity. However, local cortical activity is well-indexed by higher-frequency bands [high-γ band (Hγ): 80-150 Hz]. We compared patterns of human Hγ and LF-ERPs in deviance detection using electrocorticographic recordings from subdural electrodes over frontal and temporal cortices. Patients listened to trains of task-irrelevant tones in two conditions differing in the predictability of a deviation from repetitive background stimuli (fully predictable vs. unpredictable deviants). We found deviance-related responses in both frequency bands over lateral temporal and inferior frontal cortex, with an earlier latency for Hγ than for LF-ERPs. Critically, frontal Hγ activity but not LF-ERPs discriminated between fully predictable and unpredictable changes, with frontal cortex sensitive to unpredictable events. The results highlight the role of frontal cortex and Hγ activity in deviance detection and PE generation.predictive coding | prediction error | mismatch negativity | frontal cortex | high γ-activity
BackgroundDifferent types of bioabsorbable and nonresorbable membranes have been widely used for guided tissue regeneration (GTR) with its ultimate goal of regenerating lost periodontal structures. The purpose of the present study was to evaluate the biological effects of various bioabsorbable and nonresorbable membranes in cultures of primary human gingival fibroblasts (HGF), periodontal ligament fibroblasts (PDLF) and human osteoblast-like (HOB) cells in vitro.MethodsThree commercially available collagen membranes [TutoDent® (TD), Resodont® (RD) and BioGide® (BG)] as well as three nonresorbable polytetrafluoroethylene (PTFE) membranes [ACE (AC), Cytoplast® (CT) and TefGen-FD® (TG)] were tested. Cells plated on culture dishes (CD) served as positive controls. The effect of the barrier membranes on HGF, PDLF as well as HOB cells was assessed by the Alamar Blue fluorometric proliferation assay after 1, 2.5, 4, 24 and 48 h time periods. The structural and morphological properties of the membranes were evaluated by scanning electron microscopy (SEM).ResultsThe results showed that of the six barriers tested, TD and RD demonstrated the highest rate of HGF proliferation at both earlier (1 h) and later (48 h) time periods (P < 0.001) compared to all other tested barriers and CD. Similarly, TD, RD and BG had significantly higher numbers of cells at all time periods when compared with the positive control in PDLF culture (P ≤ 0.001). In HOB cell culture, the highest rate of cell proliferation was also calculated for TD at all time periods (P < 0.001). SEM observations demonstrated a microporous structure of all collagen membranes, with a compact top surface and a porous bottom surface, whereas the nonresorbable PTFE membranes demonstrated a homogenous structure with a symmetric dense skin layer.ConclusionResults from the present study suggested that GTR membrane materials, per se, may influence cell proliferation in the process of periodontal tissue/bone regeneration. Among the six membranes examined, the bioabsorbable membranes demonstrated to be more suitable to stimulate cellular proliferation compared to nonresorbable PTFE membranes.
It is crucial to understand what brain signals can be decoded from single trials with different recording techniques for the development of Brain-Machine Interfaces. A specific challenge for non-invasive recording methods are activations confined to small spatial areas on the cortex such as the finger representation of one hand. Here we study the information content of single trial brain activity in non-invasive MEG and EEG recordings elicited by finger movements of one hand. We investigate the feasibility of decoding which of four fingers of one hand performed a slight button press. With MEG we demonstrate reliable discrimination of single button presses performed with the thumb, the index, the middle or the little finger (average over all subjects and fingers 57%, best subject 70%, empirical guessing level: 25.1%). EEG decoding performance was less robust (average over all subjects and fingers 43%, best subject 54%, empirical guessing level 25.1%). Spatiotemporal patterns of amplitude variations in the time series provided best information for discriminating finger movements. Non-phase-locked changes of mu and beta oscillations were less predictive. Movement related high gamma oscillations were observed in average induced oscillation amplitudes in the MEG but did not provide sufficient information about the finger's identity in single trials. Importantly, pre-movement neuronal activity provided information about the preparation of the movement of a specific finger. Our study demonstrates the potential of non-invasive MEG to provide informative features for individual finger control in a Brain-Machine Interface neuroprosthesis.
Recent studies indicate that nanocrystalline hydroxyapatite (nano-HA) paste represents a promising class of bone graft substitute. However, the underlying molecular mechanisms of nano-HA function have not yet been determined. This study was conducted to investigate the proliferation of human periodontal ligament (PDL) cells cultured in the presence of nano-HA paste and to characterize associated changes in intracellular signaling pathways. Cultured PDL cells were stimulated with nano-HA paste and enamel matrix derivative (EMD) in a soluble form. Proliferation of PDL cells was determined by incorporation of bromodeoxyuridine (BrdU) in the DNA of proliferating cells. In order to understand the signaling mechanisms underlying the increased cell proliferation of PDL cells exposed to nano-HA, the phosphorylation status of the serine/threonine protein kinase Akt, of the signal regulated kinases ERK 1/2 and of the epidermal growth factor receptor (EGFR) was analyzed by Western blotting using phospho-specific antibodies. Nano-HA paste showed two-fold less proliferation potential than EMD, but both substrates increased the proliferation rate significantly (P < 0.05) as compared with the negative control. The increased proliferation rate of PDL cells in the presence of nano-HA paste was mechanistically linked to activation of the epidermal growth factor receptor (EGFR) and its downstream targets ERK1/2 and Akt. In conclusion, our findings suggest that nano-HA paste is a stimulator of cell proliferation, possibly contributing to the main processes of periodontal tissue regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.