The Schiff base compound 2,2'-{[(2-aminoethyl)imino]bis[2,1-ethanediyl-nitriloethylidyne]}bis-2-hydroxy-benzoic acid (H(4)L) as a proligand was prepared in situ. This proligand has three potential coordination pockets which make it possible to accommodate from one to three metal ions allowing for the possible formation of mono-, di-, and trinuclear complexes. Reaction of in situ prepared H(4)L with Dy(NO(3))(3)·5H(2)O resulted in the formation of a mononuclear complex [Dy(H(3)L)(2)](NO(3))·(EtOH)·8(H(2)O) (1), which shows SMM behavior. In contrast, reaction of in situ prepared H(4)L with Mn(ClO(4))(2)·6H(2)O and Dy(NO(3))(3)·5H(2)O in the presence of a base resulted in a trinuclear mixed 3d-4f complex (NHEt(3))(2)[Dy{Mn(L)}(2)](ClO(4))·2(H(2)O) (2). At low temperatures, compound 2 is a weak ferromagnet. Thus, the SMM behavior of compound 1 can be switched off by incorporating two Mn(II) ions in close proximity either side of the Dy(III). This quenching behavior is ascribed to the presence of the weak ferromagnetic interactions between the Mn(II) and Dy(III) ions, which at T > 2 K act as a fluctuating field causing the reversal of magnetization on the dysprosium ion. Mass spectrometric ion signals related to compounds 1 and 2 were both detected in positive and negative ion modes via electrospray ionization mass spectrometry. Hydrogen/deuterium exchange (HDX) reactions with ND(3) were performed in a FT-ICR Penning-trap mass spectrometer.
When expansion-cooled acetylene is excited to the ν″1+3ν″3 vibrational level (4 quanta of CH-stretch) and then photodissociated at 248.3 nm, the dominant product channel is C2H(Ã 2Π). This differs markedly from one-photon 193.3 nm photodissociation, which provides 1200 cm−1 less energy and yields C2H(X̃ 2Σ+) as the primary product. Photodissociation at 121.6 nm yields C2H(Ã 2Π) exclusively.
The vibrational fingerprint of the electronically excited short-lived complex of 1-H-pyrrolo[3,2-h]quinoline:methanol was measured using femtosecond multiphoton ionization detected infrared (IR/fsMPI) spectroscopy under supersonic jet conditions. A cyclic doubly hydrogen-bonded structure of the cluster has been proven from the comparison of the measured vibrational spectrum with that calculated with density functional theory. The employed nsIR-fsUV double resonance scheme is shown to be an effective tool for structural analysis of precursors that undergo fast deactivation and/or photoreactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.