We compare dynamical properties of brain electrical activity from different recording regions and from different physiological and pathological brain states. Using the nonlinear prediction error and an estimate of an effective correlation dimension in combination with the method of iterative amplitude adjusted surrogate data, we analyze sets of electroencephalographic (EEG) time series: surface EEG recordings from healthy volunteers with eyes closed and eyes open, and intracranial EEG recordings from epilepsy patients during the seizure free interval from within and from outside the seizure generating area as well as intracranial EEG recordings of epileptic seizures. As a preanalysis step an inclusion criterion of weak stationarity was applied. Surface EEG recordings with eyes open were compatible with the surrogates' null hypothesis of a Gaussian linear stochastic process. Strongest indications of nonlinear deterministic dynamics were found for seizure activity. Results of the other sets were found to be inbetween these two extremes.
A rapidly growing number of studies deals with the prediction of epileptic seizures. For this purpose, various techniques derived from linear and nonlinear time series analysis have been applied to the electroencephalogram of epilepsy patients. In none of these works, however, the performance of the seizure prediction statistics is tested against a null hypothesis, an otherwise ubiquitous concept in science. In consequence, the evaluation of the reported performance values is problematic. Here, we propose the technique of seizure time surrogates based on a Monte Carlo simulation to remedy this deficit.
The question whether information extracted from the electroencephalogram (EEG) of epilepsy patients can be used for the prediction of seizures has recently attracted much attention. Several studies have reported evidence for the existence of a preseizure state that can be detected using different measures derived from the theory of dynamical systems. Most of these studies, however, have neglected to sufficiently investigate the specificity of the observed effects or suffer from other methodological shortcomings. In this paper we present an automated technique for the detection of a preseizure state from EEG recordings using two different measures for synchronization between recording sites, namely, the mean phase coherence as a measure for phase synchronization and the maximum linear cross correlation as a measure for lag synchronization. Based on the observation of characteristic drops in synchronization prior to seizure onset, we used this phenomenon for the characterization of a preseizure state and its distinction from the remaining seizure-free interval. After optimizing our technique on a group of 10 patients with temporal lobe epilepsy we obtained a successful detection of a preseizure state prior to 12 out of 14 analyzed seizures for both measures at a very high specificity as tested on recordings from the seizure-free interval. After checking for in-sample overtraining via cross validation, we applied a surrogate test to validate the observed predictability. Based on our results, we discuss the differences of the two synchronization measures in terms of the dynamics underlying seizure generation in focal epilepsies.
Several recent studies emphasize the high value of nonlinear EEG analysis particularly for improved characterization of epileptic brain states. In this review the authors report their work to increase insight into the spatial and temporal dynamics of the epileptogenic process. Specifically, they discuss possibilities for seizure anticipation, which is one of the most challenging aspects of epileptology. Although there are numerous studies exploring basic neuronal mechanisms that are likely to be associated with seizures, to date no definite information is available regarding how, when, or why a seizure occurs. Nonlinear EEG analysis now provides strong evidence that the interictal-ictal state transition is not an abrupt phenomenon. Rather, findings indicate that it is indeed possible to detect a preseizure phase. The unequivocal definition of such a state with a sufficient length would enable investigations of basic mechanisms leading to seizure initiation in humans, and development of adequate seizure prevention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.