Abstract. Following the general warming trend in Greenland, an increase in calving rates, retreat and ice flow has been observed at ocean-terminating outlet glaciers. These changes contribute substantially to the current mass loss of the Greenland Ice Sheet. In order to constrain models of ice dynamics as well as estimates of mass change, detailed knowledge of geometry and ice flow is needed, in particular on the rapidly changing tongues of ocean-terminating outlet glaciers. In this study, we validate velocity estimates and spatial patterns close to the calving terminus of such an outlet derived from an iterative offset-tracking method based on synthetic aperture radar (SAR) intensity data with a collection of three independent reference measurements of glacier flow. These reference datasets are comprised of measurements from differential GPS, a terrestrial radar interferometer (TRI) and repeated unmanned aerial vehicle (UAV) surveys. Our approach to SAR velocity processing aims at achieving a relatively fine grid spacing and a high temporal resolution in order to best resolve the steep velocity gradients in the terminus area and aims to exploit the 12 d repeat interval of the single-satellite Sentinel-1A sensor. Results from images of the medium-sized ocean-terminating outlet glacier Eqip Sermia acquired by Sentinel-1A and RADARSAT-2 exhibit a mean difference of 11.5 % when compared to the corresponding GPS measurements. An areal comparison of our SAR velocity fields with independently generated velocity maps from TRI and UAV surveys showed good agreement in magnitude and spatial patterns, with mean differences smaller than 0.7 m d−1. In comparison with existing operational velocity products, our SAR-derived velocities show an improved spatial velocity pattern near the margins and calving front. There 8 % to 30 % higher surface ice velocities are produced, which has implications on ice fluxes and on mass budget estimates of similarly sized outlet glaciers. Further, we show that offset tracking from SAR intensity data at relatively low spatio-temporal sampling intervals is a valid method to derive glacier flow fields for fast-flowing glacier termini of outlet glaciers and, given the repeat period of 12 d of the Sentinel-1A sensor (6 d with Sentinel-1B), has the potential to be applied operationally in a quasi-continuous mode.
The benefits of composite products are well known to users of data from optical sensors: cloud-cleared composite reflectance or index products are commonly used as an analysis-ready data (ARD) layer. No analogous composite products are currently in widespread use that is based on spaceborne radar satellite backscatter signals. Here, we present a methodology to produce wide-area ARD composite backscatter images. They build on the existing heritage of geometrically and radiometrically terrain corrected level 1 products. By combining backscatter measurements of a single region seen from multiple satellite tracks (incl. ascending and descending), they are able to provide wide-area coverage with low latency. The analysis-ready composite backscatter maps provide flattened backscatter estimates that are geometrically and radiometrically corrected for slope effects. A mask layer annotating the local quality of the composite resolution is introduced. Multiple tracks are combined by weighting each observation by its local resolution, generating seamless wide-area backscatter maps suitable for applications ranging from wet snow monitoring to land cover classification or short-term change detection.
Following the general warming trend in Greenland, an increase in calving rates, retreat and ice flow has been observed at ocean-terminating outlet glaciers. These changes contribute substantially to the current mass loss of the Greenland Ice Sheet. In order to constrain models of ice dynamics as well as estimates of mass change, detailed knowledge of geometry and ice-flow are needed, in particular on the rapidly changing tongues of ocean-terminating outlet glaciers. In this study, we validate velocity estimates and spatial patterns close to the calving terminus of such an outlet derived from an iterative offset 5 tracking method based on SAR intensity data with a collection of three independent reference measurements of glacier flow.These reference data sets are comprised of measurements from differential GPS, a Terrestrial Radar Interferometer (TRI) and repeated UAV surveys. Our approach for the SAR-velocity processing aims achieving at high spatial and temporal resolution in order to best resolve the steep velocity gradients in the terminus area and to exploit the 12 day repeat interval of the singlesatellite Sentinel-1A sensor. Results from images of the medium-sized ocean terminating outlet glacier Eqip Sermia acquired by 10 Sentinel-1A and RADARSAT-2 exhibit a mean difference of 8.7% when compared to the corresponding GPS measurements.An areal comparison of our SAR velocity-fields with independently generated velocity maps from TRI and UAV showed a good agreement in magnitude and spatial patterns, with mean differences smaller than 0.7 m·d -1 . In comparison with existing operational velocity products, our SAR-derived velocities showed a strongly improved spatial velocity pattern near the margins and calving front. There 10% to 20% higher surface ice velocities are produced, which has substantial implications on ice fluxes 15 and on mass budget estimates of ice sheets. Further, we showed that offset tracking from SAR intensity data at a high spatiotemporal resolution is a valid method to derive glacier flow fields for fast-flowing glacier termini of outlet glaciers and, given the repeat interval of 12 days of the Sentinel-1A sensor (6 days with Sentinel-1B), has the potential to be applied operationally in a quasi-continuous mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.