Innate lymphoid cells (ILCs) are a recently recognized group of lymphocytes that have important functions in protecting epithelial barriers against infections and in maintaining organ homeostasis. ILCs have been categorized into three distinct groups, transcriptional circuitry and effector functions of which strikingly resemble the various T helper cell subsets. Here, we identify a common, Id2-expressing progenitor to all interleukin 7 receptor-expressing, "helper-like" ILC lineages, the CHILP. Interestingly, the CHILP differentiated into ILC2 and ILC3 lineages, but not into conventional natural killer (cNK) cells that have been considered an ILC1 subset. Instead, the CHILP gave rise to a peculiar NKp46(+) IL-7Rα(+) ILC lineage that required T-bet for specification and was distinct of cNK cells or other ILC lineages. Such ILC1s coproduced high levels of IFN-γ and TNF and protected against infections with the intracellular parasite Toxoplasma gondii. Our data significantly advance our understanding of ILC differentiation and presents evidence for a new ILC lineage that protects barrier surfaces against intracellular infections.
At mucosal surfaces, the immune system should not initiate inflammatory immune responses to the plethora of antigens constantly present in the environment, but should remain poised to unleash a potent assault on intestinal pathogens. The transcriptional programs and regulatory factors required for immune cells to switch from homeostatic (often tissue-protective) function to potent antimicrobial immunity are poorly defined. Mucosal retinoic-acid-receptor-related orphan receptor-γt-positive (RORγt(+)) innate lymphoid cells (ILCs) are emerging as an important innate lymphocyte population required for immunity to intestinal infections. Various subsets of RORγt(+) ILCs have been described but the transcriptional programs controlling their specification and fate remain largely unknown. Here we provide evidence that the transcription factor T-bet determines the fate of a distinct lineage of CCR6(-)RORγt(+) ILCs. Postnatally emerging CCR6(-)RORγt(+) ILCs upregulated T-bet and this was controlled by cues from the commensal microbiota and interleukin-23 (IL-23). In contrast, CCR6(+)RORγt(+) ILCs, which arise earlier during ontogeny, did not express T-bet. T-bet instructed the expression of T-bet target genes such as interferon-γ (IFN-γ) and of the natural cytotoxicity receptor NKp46. Mice genetically lacking T-bet showed normal development of CCR6(-)RORγt(+) ILCs, but they could not differentiate into NKp46-expressing RORγt(+) ILCs (that is, IL-22-producing natural killer (NK-22) cells) and failed to produce IFN-γ. The production of IFN-γ by T-bet-expressing CCR6(-)RORγt(+) ILCs was essential for the release of mucus-forming glycoproteins required to protect the epithelial barrier during Salmonella enterica infection. Salmonella infection also causes severe enterocolitis that is at least partly driven by IFN-γ. Mice deficient for T-bet or depleted of ILCs developed only mild enterocolitis. Thus, graded expression of T-bet in CCR6(-)RORγt(+) ILCs facilitates the differentiation of IFN-γ-producing CCR6(-)RORγt(+) ILCs required to protect the epithelial barrier against Salmonella infections. Co-expression of T-bet and RORγt, which is also found in subsets of IL-17-producing T-helper (T(H)17) cells, may be an evolutionarily conserved transcriptional program that originally developed as part of the innate defence against infections but that also confers an increased risk of immune-mediated pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.