A 1989 survey compares the conceptual and technical approaches to the collection of municipal solid waste, secondary materials and household hazardous wastes in eight major European cities. The collection systems reflect local structural conditions as well as the different political tasks of municipal waste management. The traditional focus on collection and treatment has been enlarged by separate collection and public education, and economic considerations are of increasing importance.
The thymectomy specimens from the “thymectomy trial in non-thymomatous myasthenia gravis patients receiving prednisone therapy” (MGTX) underwent rigid and comprehensive work-up, which permits analysis of the spatial distribution of histological and immunohistological features. This analysis revealed strong intra- and inter-case variability. While many histological features (e.g. median percent fat content among different specimens) can easily be correlated with clinical parameters, intra-case spatial variability of histological features has yet defied quantification and statistical evaluation. To overcome this gap in digital pathology, we here propose intra-case entropy of measured histological features in all available slides of a given thymectomy specimen as a quantitative marker of spatial histological heterogeneity. Calculation of entropy led to one value per specimen and histological feature. Through these ‘entropy values’ the so far neglected degree of spatial histological heterogeneity could be fed into statistical analyses, extending the scope of clinico-pathological correlations.
BackgroundImmunohistochemical analysis of cellular interactions in the bone marrow in situ is demanding, due to its heterogeneous cellular composition, the poor delineation and overlap of functional compartments and highly complex immunophenotypes of several cell populations (e.g. regulatory T-cells) that require immunohistochemical marker sets for unambiguous characterization. To overcome these difficulties, we herein present an approach to describe objects (e.g. cells, bone trabeculae) by a scalar field that can be propagated through registered images of serial histological sections.MethodsThe transformation of objects within images (e.g. cells) to a scalar field was performed by convolution of the object’s centroids with differently formed radial basis function (e.g. for direct or indirect spatial interaction). On the basis of such a scalar field, a summation field described distributed objects within an image.ResultsAfter image registration i) colocalization analysis could be performed on basis scalar field, which is propagated through registered images, and - due to the shape of the field – were barely prone to matching errors and morphological changes by different cutting levels; ii) furthermore, depending on the field shape the colocalization measurements could also quantify spatial interaction (e.g. direct or paracrine cellular contact); ii) the field-overlap, which represents the spatial distance, of different objects (e.g. two cells) could be calculated by the histogram intersection.ConclusionsThe description of objects (e.g. cells, cell clusters, bone trabeculae etc.) as a field offers several possibilities: First, co-localization of different markers (e.g. by immunohistochemical staining) in serial sections can be performed in an automatic, objective and quantifiable way. In contrast to multicolour staining (e.g. 10-colour immunofluorescence) the financial and technical requirements are fairly minor. Second, the approach allows searching for different types of spatial interactions (e.g. direct and indirect cellular interaction) between objects by taking field shape into account (e.g. thin vs. broad). Third, by describing spatially distributed groups of objects as summation field, it gives cluster definition that relies rather on the bare object distance than on the modelled spatial cellular interaction.Electronic supplementary materialThe online version of this article (doi:10.1186/s13000-015-0383-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.