Components of the insect clot, an extremely rapid forming and critical part of insect immunity, are just beginning to be identified (1). Here we present a proteomic comparison of larval hemolymph before and after clotting to learn more about this process. This approach was supplemented by the identification of substrates for the enzyme transglutaminase, which plays a role in both vertebrate blood clotting (as factor XIIIa) and hemolymph coagulation in arthropods. Hemolymph proteins present in lower amounts after clotting include CG8502 (a protein with a mucin-type domain and a domain with similarity to cuticular components), CG11313 (a protein with similarity to prophenoloxidase-activating proteases), and two phenoloxidases, lipophorin, a secreted gelsolin, and CG15825, which had previously been isolated from clots (2). Proteins whose levels increase after clotting include a ferritin-subunit and two members of the immunoglobulin family with a high similarity to the small immunoglobulin-like molecules involved in mammalian innate immunity. Our results correlate with findings from another study of coagulation (2) that involved a different experimental approach. Proteomics allows the isolation of novel candidate clotting factors, leading to a more complete picture of clotting. In addition, our two-dimensional protein map of cell-free Drosophila hemolymph includes many additional proteins that were not found in studies performed on whole hemolymph.
Clotting is critical in limiting loss of hemolymph and initiating wound healing in insects as well as in vertebrates. Clotting is also an important immune defense, quickly forming a secondary barrier to infection, thereby immobilizing, and possibly killing bacteria directly. Here, we describe methods to assess clotting and to extract the clot from Drosophila larval hemolymph by using aggregation of paramagnetic beads. The validity of the assay was demonstrated by characterization of mutants. We show that clotting occurs in the absence of phenoloxidase and that the Drosophila clot binds bacteria. We also describe a pullout assay to purify the clot as a whole, free from entrapped hemocytes and cellular debris. Proteins subsequently identified by mass spectrometry include both predicted and novel clot proteins. Immune induction has been shown for three of the latter, namely Tiggrin and two unknown proteins (GC15825 and CG15293) that we now propose function in hemolymph clotting. The most abundant clot protein is Hemolectin, and we confirm that hemolectin mutant larvae show clotting defects.
In contrast to both vertebrates and non-insect arthropods, little is known about the coagulation of hemolymph (hemostasis) in insects. We discuss the integration of the hemostatic response with other branches of the insect immune system. We also describe the present stage in the characterization of both soluble and cellular factors that contribute to hemostasis in insects. The factors of the well-characterized clotting cascades of vertebrates,
In insects the enzyme phenoloxidase (PO) catalyzes melanin deposition at the wound site and around parasitoid eggs. Its proenzyme prophenoloxidase (proPO) is proteolytically cleaved to active phenoloxidase by a cascade consisting of serine proteases and inhibited by serpins. The Drosophila genome encodes 29 serpins, of which only two, Serpin-27A (Spn27A) and Necrotic, have been analyzed in detail. Using a genetic approach, we demonstrate that the so far uncharacterized Serpin-28D (Spn28D, CG7219) regulates the proPO cascade in both hemolymph and tracheal compartments. spn28D is the serpin gene most strongly induced upon injury. Inactivation of spn28D causes pupal lethality and a deregulated developmental PO activation leading to extensive melanization of tissues in contact with air and pigmentation defects of the adult cuticle. Our data also show that Spn28D regulates hemolymph PO activity in both larvae and adults at a different level than Spn27A. Our data support a model in which Spn28D confines PO availability by controlling its initial release, while Spn27A is rather limiting the melanization reaction to the wound site. This study further highlights the complexity of the proPO cascade that can be differentially regulated in different tissues during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.