In recent years, analogs of human insulin have been engineered with the aim of improving therapy for people with diabetes. To ensure that the safety profile of the human hormone is not compromised by the molecular modifications, the toxico-pharmacological properties of insulin analogs should be carefully monitored. In this study, we compared the insulin and IGF-I receptor binding properties and metabolic and mitogenic potencies of insulin aspart (B28Asp human insulin), insulin lispro (B28Lys,B29Pro human insulin), insulin glargine (A21Gly,B31Arg,B32Arg human insulin), insulin detemir (NN304) [B29Lys(-tetradecanoyl),desB30 human insulin], and reference insulin analogs. Receptor affinities were measured using purified human receptors, insulin receptor dissociation rates were determined using Chinese hamster ovary cells overexpressing the human insulin receptor, metabolic potencies were evaluated using primary mouse adipocytes, and mitogenic potencies were determined in human osteosarcoma cells. Metabolic potencies correlated well with insulin receptor affinities. Mitogenic potencies in general correlated better with IGF-I receptor affinities than with insulin receptor off-rates. The 2 rapid-acting insulin analogs aspart and lispro resembled human insulin on all parameters, except for a slightly elevated IGF-I receptor affinity of lispro. In contrast, the 2 long-acting insulin analogs, glargine and detemir, differed significantly from human insulin. The combination of the B31B32diArg and A21Gly substitutions provided insulin glargine with a 6-to 8-fold increased IGF-I receptor affinity and mitogenic potency compared with human insulin. The attachment of a fatty acid chain to LysB29 provided insulin detemir with reduced receptor affinities and metabolic and mitogenic potencies but did not change the balance between mitogenic and metabolic potencies. The safety implications of the increased growth-stimulating potential of insulin glargine are unclear. The reduced in vitro potency of insulin detemir might explain why this analog is not as effective on a molar basis as human insulin in humans.
Although further evidence for a graft-versus-leukemia effect by DLI is provided, our results confirm, that the clinical benefit is limited to a minority of patients. Strategies to reduce tumor burden before DLI, as well as alternative treatment options should be investigated in adults with relapsed AML after HSCT.
Insulin-like growth factor I (IGF-I) is an important mediator of growth hormone (GH) action and it appeared tempting to evaluate possible clinical applications. Recombinant IGF-I was infused s.c. at a dose of 20 jug/kg of body weight per hour during 6 days in two healthy adult subjects. Blood glucose and fasting insulin levels remained within normal limits and IGF-H levels were suppressed. In contrast to insulin, fasting C peptide levels were decreased. GH secretion was also suppressed by IGF-I. Our preliminary data allow us to distinguish between the effects of GH per se and those of IGF-I: GH causes hyperinsulinism, whereas IGF-I leads to decreased insulin secretion. Glomerular filtration rate, as estimated by creatinine clearance, increased to 130% of preinfusion values during the IGF-I infusion. Total creatinine and urea excretion remained unchanged. We conclude that IGF-I influences kidney function and, in contrast to GH, exerts an insulin-sparing effect. It may be speculated that the therapeutic spectrum of IGF-I is quite different from that of GH.
After relapse from allogeneic HSCT1, HSCT2 can induce 2-year OS in approximately 25% of patients. Unrelated HSCT2 is feasible after related and unrelated HSCT1. Donor change for HSCT2 is a valid option. However, a clear advantage in terms of OS could not be demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.